Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified auto_round/alg_ext.abi3.so
Binary file not shown.
1 change: 1 addition & 0 deletions auto_round/compressors/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -2733,6 +2733,7 @@ def _quantize_blocks(
else:
logger.info("using algorithm extension for quantization.")
except (ImportError, ModuleNotFoundError):
logger.error("algorithm extension import error, fallback to default mode")
quantize_block = self._quantize_block
else:
quantize_block = self._quantize_block
Expand Down
3 changes: 3 additions & 0 deletions test/test_cpu/test_autoround.py
Original file line number Diff line number Diff line change
Expand Up @@ -716,6 +716,9 @@ def test_alg_ext(self):
ar = AutoRound(model_name, scheme="W2A16", iters=1, nsamples=1, enable_alg_ext=True)
ar.quantize()

def test_alg_ext_import(self):
from auto_round.alg_ext import quantize_block_ext

def test_invalid_layer_config(self):
with self.assertRaises(ValueError):
layer_config = {"model.decoder.layers.2.self_attnx": {"bits": 2}}
Expand Down
40 changes: 40 additions & 0 deletions test/test_cuda/test_alg_ext.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import shutil
import sys
import unittest

sys.path.insert(0, "../..")

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

from auto_round import AutoRound, AutoRoundConfig
from auto_round.eval.evaluation import simple_evaluate_user_model


class TestAlgExt(unittest.TestCase):

@classmethod
def setUpClass(self):
self.model_name = "/models/opt-125m"
self.save_folder = "./saved"

@classmethod
def tearDownClass(self):
shutil.rmtree(self.save_folder, ignore_errors=True)
shutil.rmtree("runs", ignore_errors=True)

def test_2bits(self):
model_name = "/models/opt-125m"
ar = AutoRound(model=model_name, bits=2, group_size=64, enable_alg_ext=True)
ar.quantize_and_save(self.save_folder)
model = AutoModelForCausalLM.from_pretrained(
self.save_folder,
device_map="auto",
)

tokenizer = AutoTokenizer.from_pretrained(self.save_folder)
result = simple_evaluate_user_model(model, tokenizer, batch_size=64, tasks="lambada_openai")
print(result["results"]["lambada_openai"]["acc,none"])
# wo alg ext 0.2084, with 0.2364
self.assertGreater(result["results"]["lambada_openai"]["acc,none"], 0.22)
shutil.rmtree(self.save_folder, ignore_errors=True)