Skip to content

detectron2: symbolically traced variables cannot be used as inputs to control flow #238

@mbergal

Description

@mbergal

I am using version 1.9.0

Traceback (most recent call last):
  File "./timing.py", line 106, in <module>
    ipex.optimize(model.backbone)        
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/intel_extension_for_pytorch/frontend.py", line 238, in optimize
    optimized_model = optimization.fuse(optimized_model, inplace=inplace)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/experimental/optimization.py", line 60, in fuse
    fx_model = fx.symbolic_trace(model)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 907, in symbolic_trace
    graph = tracer.trace(root, concrete_args)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 615, in trace
    self.create_node('output', 'output', (self.create_arg(fn(*args)),), {},
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/detectron2/modeling/backbone/fpn.py", line 126, in forward
    bottom_up_features = self.bottom_up(x)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 604, in module_call_wrapper
    return self.call_module(mod, forward, args, kwargs)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 422, in call_module
    return forward(*args, **kwargs)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 600, in forward
    return _orig_module_call(mod, *args, **kwargs)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/detectron2/modeling/backbone/resnet.py", line 443, in forward
    assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/proxy.py", line 251, in __bool__
    return self.tracer.to_bool(self)
  File "/data/home/ubuntu/projects/ai-general/ml/.venv/lib/python3.8/site-packages/torch/fx/proxy.py", line 152, in to_bool
    raise TraceError('symbolically traced variables cannot be used as inputs to control flow')
torch.fx.proxy.TraceError: symbolically traced variables cannot be used as inputs to control flow

and the model is

FPN(
  (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
  (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
  (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
  (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
  (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (top_block): LastLevelMaxPool()
  (bottom_up): ResNet(
    (stem): BasicStem(
      (conv1): Conv2d(
        3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
        (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
      )
    )
    (res2): Sequential(
      (0): BottleneckBlock(
        (shortcut): Conv2d(
          64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv1): Conv2d(
          64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
        (conv2): Conv2d(
          64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
        (conv3): Conv2d(
          64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
      )
      (1): BottleneckBlock(
        (conv1): Conv2d(
          256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
        (conv2): Conv2d(
          64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
        (conv3): Conv2d(
          64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
      )
      (2): BottleneckBlock(
        (conv1): Conv2d(
          256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
        (conv2): Conv2d(
          64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
        (conv3): Conv2d(
          64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
      )
    )
    (res3): Sequential(
      (0): BottleneckBlock(
        (shortcut): Conv2d(
          256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
        (conv1): Conv2d(
          256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv2): Conv2d(
          128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv3): Conv2d(
          128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
      )
      (1): BottleneckBlock(
        (conv1): Conv2d(
          512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv2): Conv2d(
          128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv3): Conv2d(
          128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
      )
      (2): BottleneckBlock(
        (conv1): Conv2d(
          512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv2): Conv2d(
          128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv3): Conv2d(
          128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
      )
      (3): BottleneckBlock(
        (conv1): Conv2d(
          512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv2): Conv2d(
          128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
        )
        (conv3): Conv2d(
          128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
      )
    )
    (res4): Sequential(
      (0): BottleneckBlock(
        (shortcut): Conv2d(
          512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        )
        (conv1): Conv2d(
          512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv3): Conv2d(
          256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        )
      )
      (1): BottleneckBlock(
        (conv1): Conv2d(
          1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv3): Conv2d(
          256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        )
      )
      (2): BottleneckBlock(
        (conv1): Conv2d(
          1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv3): Conv2d(
          256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        )
      )
      (3): BottleneckBlock(
        (conv1): Conv2d(
          1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv3): Conv2d(
          256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        )
      )
      (4): BottleneckBlock(
        (conv1): Conv2d(
          1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv3): Conv2d(
          256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        )
      )
      (5): BottleneckBlock(
        (conv1): Conv2d(
          1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        )
        (conv3): Conv2d(
          256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        )
      )
    )
    (res5): Sequential(
      (0): BottleneckBlock(
        (shortcut): Conv2d(
          1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
        )
        (conv1): Conv2d(
          1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
        (conv2): Conv2d(
          512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
        (conv3): Conv2d(
          512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
        )
      )
      (1): BottleneckBlock(
        (conv1): Conv2d(
          2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
        (conv2): Conv2d(
          512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
        (conv3): Conv2d(
          512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
        )
      )
      (2): BottleneckBlock(
        (conv1): Conv2d(
          2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
        (conv2): Conv2d(
          512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        )
        (conv3): Conv2d(
          512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
        )
      )
    )
  )
)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions