Skip to content
This repository was archived by the owner on Oct 25, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 34 additions & 30 deletions examples/vllm/vllm_acceleration_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,42 +37,46 @@ def main(args_in: Optional[List[str]] = None) -> None:
print(args)

if args.benchmark:
if args.use_neural_speed:
os.environ["NEURAL_SPEED_VERBOSE"] = "1"
woq_config = RtnConfig(bits=4, weight_dtype="int4", compute_dtype="int8", scale_dtype="bf16")
model_with_ns = AutoModelForCausalLM.from_pretrained(args.model_path, quantization_config=woq_config)

tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
inputs = tokenizer(args.prompt, return_tensors="pt").input_ids
sampling_params = SamplingParams(max_tokens=32)
config = RtnConfig(compute_dtype="int8",
group_size=128,
scale_dtype="bf16",
weight_dtype="int4_clip",
bits=4)
print(config)
prompts = [args.prompt]
llm = LLM(model=args.model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.model_path, use_vllm=True, config=config)

T5 = time.time()
output = model_with_ns.generate(inputs, max_new_tokens=32)
T6 = time.time()
print("neural speed output = ", output)
for prompt in prompts:
vllm_outputs = llm.generate(prompt, sampling_params) # Generate texts from the prompts.
qbits_output = model.generate(prompt, sampling_params)

llm = LLM(model=args.model_path, trust_remote_code=True)
sampling_params = SamplingParams(max_tokens=32)
T1 = time.time()
original_outputs = llm.generate(args.prompt, sampling_params) # Generate texts from the prompts.
T2 = time.time()
vllm_latency = (T2 - T1) * 1000
print("vLLM input_tokens_length = ", len(vllm_outputs[0].prompt_token_ids),
"output_tokens_length = ", len(vllm_outputs[0].outputs[0].token_ids))
print('The vLLM generate = ',
vllm_outputs[0].metrics.finished_time - vllm_outputs[0].metrics.arrival_time, "s")
print("The vLLM first token time = ",
vllm_outputs[0].metrics.first_token_time - vllm_outputs[0].metrics.first_scheduled_time)

model = AutoModelForCausalLM.from_pretrained(args.model_path, use_vllm=True)
T3 = time.time()
optimized_output = model.generate(args.prompt, sampling_params)
T4 = time.time()
qbits_latency = (T4 - T3) * 1000
print("QBits_vLLM input_tokens_length = ", len(qbits_output[0].prompt_token_ids),
"output_tokens_length = ", len(qbits_output[0].outputs[0].token_ids))
print('The QBits optimized generate = ',
qbits_output[0].metrics.finished_time - qbits_output[0].metrics.arrival_time, "s")
print("The QBits first token time = ",
qbits_output[0].metrics.first_token_time - qbits_output[0].metrics.first_scheduled_time)

print("original outputs = ", original_outputs)
print("input_tokens_length = ", len(original_outputs[0].prompt_token_ids))
print("output_tokens_length = ", len(original_outputs[0].outputs[0].token_ids))
if args.use_neural_speed:
os.environ["NEURAL_SPEED_VERBOSE"] = "1"
woq_config = RtnConfig(bits=4, weight_dtype="int4", compute_dtype="int8", scale_dtype="bf16")
model_with_ns = AutoModelForCausalLM.from_pretrained(args.model_path,
quantization_config=woq_config)

print("optimized outputs = ", optimized_output)
print("input_tokens_length = ", len(optimized_output[0].prompt_token_ids))
print("output_tokens_length = ", len(optimized_output[0].outputs[0].token_ids))
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
inputs = tokenizer(args.prompt, return_tensors="pt").input_ids

print('The qbits optimized generate:%.2f ms' % qbits_latency)
print('The original vLLM generate:%.2f ms' % vllm_latency)
output = model_with_ns.generate(inputs, max_new_tokens=32)
print("neural speed output = ", output)

return

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -146,8 +146,10 @@ def forward(self, x: torch.Tensor):
bias = None if self.bias is None else self.bias.data.float()
if not x.is_contiguous():
x = x.contiguous()

# Only FP32 activation supports gemv which benefits next-token.
out = matmul_kbit(
x.view(m, shape[-1]),
x.view(m, shape[-1]).float(),
self.weight,
bias,
out,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -419,11 +419,15 @@ def forward(self, input: torch.Tensor) -> tuple[torch.Tensor, None]:
model.load_weights(weights_iterator)

print("INC quantizing...")
config = RtnConfig(compute_dtype="bf16",
group_size=128,
scale_dtype="bf16",
weight_dtype="int4_clip",
bits=4)
config = kwargs.pop("config", None)
if config is None:
config = RtnConfig(compute_dtype="int8",
group_size=128,
scale_dtype="bf16",
weight_dtype="int4_clip",
bits=4)
print("using default RTNConfig = ", config)
print("Using customized config = ", config)
model = convert_to_quantized_model(model, config)

return llm
Expand Down