Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 32 additions & 34 deletions tests/test_catalyst.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,9 @@
import os

import catalyst
import pytest
import torch
from catalyst import dl
from catalyst.contrib.datasets import MNIST
from catalyst.utils.torch import get_available_engine
from torch import nn, optim
from torch.utils.data import DataLoader

from dvclive import Live
from dvclive.catalyst import DvcLiveCallback
Expand All @@ -14,38 +12,46 @@
# pylint: disable=redefined-outer-name, unused-argument


@pytest.fixture(scope="session")
def loaders(tmp_path_factory):
path = tmp_path_factory.mktemp("catalyst_mnist")
train_data = MNIST(path, train=True, download=True)
valid_data = MNIST(path, train=False, download=True)
return {
"train": DataLoader(train_data, batch_size=32),
"valid": DataLoader(valid_data, batch_size=32),
}


@pytest.fixture
def runner():
return dl.SupervisedRunner(
engine=get_available_engine(),
engine=catalyst.utils.torch.get_available_engine(cpu=True),
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Without cpu=True, it was hanging for a while for me, possibly initializing GPU/CUDA.

input_key="features",
output_key="logits",
target_key="targets",
loss_key="loss",
)


def test_catalyst_callback(tmp_dir, runner, loaders):
model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)
# see:
# https://github.com/catalyst-team/catalyst/blob/e99f9/tests/catalyst/callbacks/test_batch_overfit.py
@pytest.fixture
def runner_params():
from torch.utils.data import DataLoader, TensorDataset

catalyst.utils.set_global_seed(42)
num_samples, num_features = int(32e1), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=0)
loaders = {"train": loader, "valid": loader}

model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])
return {
"model": model,
"criterion": criterion,
"optimizer": optimizer,
"scheduler": scheduler,
"loaders": loaders,
}


def test_catalyst_callback(tmp_dir, runner, runner_params):
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
**runner_params,
num_epochs=2,
callbacks=[
dl.AccuracyCallback(input_key="logits", target_key="targets"),
Expand All @@ -70,17 +76,9 @@ def test_catalyst_callback(tmp_dir, runner, loaders):
assert any("accuracy" in x.name for x in valid_path.iterdir())


def test_catalyst_model_file(tmp_dir, runner, loaders):
model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)

def test_catalyst_model_file(tmp_dir, runner, runner_params):
runner.train(
model=model,
engine=runner.engine,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
**runner_params,
num_epochs=2,
callbacks=[
dl.AccuracyCallback(input_key="logits", target_key="targets"),
Expand Down