|
| 1 | +// A Java program for Prim's Minimum Spanning Tree (MST) algorithm. |
| 2 | +// The program is for adjacency matrix representation of the graph |
| 3 | + |
| 4 | +import java.util.*; |
| 5 | +import java.lang.*; |
| 6 | +import java.io.*; |
| 7 | + |
| 8 | +class PrimsAlgo { |
| 9 | + // Number of vertices in the graph |
| 10 | + private static final int V = 5; |
| 11 | + |
| 12 | + // A utility function to find the vertex with minimum key |
| 13 | + // value, from the set of vertices not yet included in MST |
| 14 | + int minKey(int key[], Boolean mstSet[]) |
| 15 | + { |
| 16 | + // Initialize min value |
| 17 | + int min = Integer.MAX_VALUE, min_index = -1; |
| 18 | + |
| 19 | + for (int v = 0; v < V; v++) |
| 20 | + if (mstSet[v] == false && key[v] < min) { |
| 21 | + min = key[v]; |
| 22 | + min_index = v; |
| 23 | + } |
| 24 | + |
| 25 | + return min_index; |
| 26 | + } |
| 27 | + |
| 28 | + // A utility function to print the constructed MST stored in |
| 29 | + // parent[] |
| 30 | + void printMST(int parent[], int graph[][]) |
| 31 | + { |
| 32 | + System.out.println("Edge \tWeight"); |
| 33 | + for (int i = 1; i < V; i++) |
| 34 | + System.out.println(parent[i] + " - " + i + "\t" + graph[i][parent[i]]); |
| 35 | + } |
| 36 | + |
| 37 | + // Function to construct and print MST for a graph represented |
| 38 | + // using adjacency matrix representation |
| 39 | + void primMST(int graph[][]) |
| 40 | + { |
| 41 | + // Array to store constructed MST |
| 42 | + int parent[] = new int[V]; |
| 43 | + |
| 44 | + // Key values used to pick minimum weight edge in cut |
| 45 | + int key[] = new int[V]; |
| 46 | + |
| 47 | + // To represent set of vertices included in MST |
| 48 | + Boolean mstSet[] = new Boolean[V]; |
| 49 | + |
| 50 | + // Initialize all keys as INFINITE |
| 51 | + for (int i = 0; i < V; i++) { |
| 52 | + key[i] = Integer.MAX_VALUE; |
| 53 | + mstSet[i] = false; |
| 54 | + } |
| 55 | + |
| 56 | + // Always include first 1st vertex in MST. |
| 57 | + key[0] = 0; // Make key 0 so that this vertex is |
| 58 | + // picked as first vertex |
| 59 | + parent[0] = -1; // First node is always root of MST |
| 60 | + |
| 61 | + // The MST will have V vertices |
| 62 | + for (int count = 0; count < V - 1; count++) { |
| 63 | + // Pick thd minimum key vertex from the set of vertices |
| 64 | + // not yet included in MST |
| 65 | + int u = minKey(key, mstSet); |
| 66 | + |
| 67 | + // Add the picked vertex to the MST Set |
| 68 | + mstSet[u] = true; |
| 69 | + |
| 70 | + // Update key value and parent index of the adjacent |
| 71 | + // vertices of the picked vertex. Consider only those |
| 72 | + // vertices which are not yet included in MST |
| 73 | + for (int v = 0; v < V; v++) |
| 74 | + |
| 75 | + // graph[u][v] is non zero only for adjacent vertices of m |
| 76 | + // mstSet[v] is false for vertices not yet included in MST |
| 77 | + // Update the key only if graph[u][v] is smaller than key[v] |
| 78 | + if (graph[u][v] != 0 && mstSet[v] == false && graph[u][v] < key[v]) { |
| 79 | + parent[v] = u; |
| 80 | + key[v] = graph[u][v]; |
| 81 | + } |
| 82 | + } |
| 83 | + |
| 84 | + // print the constructed MST |
| 85 | + printMST(parent, graph); |
| 86 | + } |
| 87 | + |
| 88 | + public static void main(String[] args) |
| 89 | + { |
| 90 | + /* Let us create the following graph |
| 91 | + 2 3 |
| 92 | + (0)--(1)--(2) |
| 93 | + | / \ | |
| 94 | + 6| 8/ \5 |7 |
| 95 | + | / \ | |
| 96 | + (3)-------(4) |
| 97 | + 9 */ |
| 98 | + MST t = new MST(); |
| 99 | + int graph[][] = new int[][] { { 0, 2, 0, 6, 0 }, |
| 100 | + { 2, 0, 3, 8, 5 }, |
| 101 | + { 0, 3, 0, 0, 7 }, |
| 102 | + { 6, 8, 0, 0, 9 }, |
| 103 | + { 0, 5, 7, 9, 0 } }; |
| 104 | + |
| 105 | + // Print the solution |
| 106 | + t.primMST(graph); |
| 107 | + } |
| 108 | +} |
0 commit comments