Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions ML Project/ImageDataGenerator
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Import necessary libraries
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# Set up data directories
train_dir = 'train'
test_dir = 'test'

# Data Preprocessing
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(train_dir, target_size=(64, 64), batch_size=32, class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir, target_size=(64, 64), batch_size=32, class_mode='binary')

# Build a Convolutional Neural Network (CNN) model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=1, activation='sigmoid')

# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Train the model
model.fit(train_generator, steps_per_epoch=len(train_generator), epochs=10, validation_data=test_generator, validation_steps=len(test_generator))

# Evaluate the model
test_loss, test_accuracy = model.evaluate(test_generator, steps=len(test_generator))
print("Test accuracy: {:.2f}%".format(test_accuracy * 100))

# Save the model
model.save('cat_dog_classifier.h5')