Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions keras_hub/api/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@
from keras_hub.src.models.resnet.resnet_image_converter import (
ResNetImageConverter,
)
from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
from keras_hub.src.models.sam.sam_mask_decoder import SAMMaskDecoder
from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
from keras_hub.src.models.whisper.whisper_audio_converter import (
Expand Down
6 changes: 6 additions & 0 deletions keras_hub/api/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,9 @@
ImageClassifierPreprocessor,
)
from keras_hub.src.models.image_segmenter import ImageSegmenter
from keras_hub.src.models.image_segmenter_preprocessor import (
ImageSegmenterPreprocessor,
)
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
from keras_hub.src.models.llama3.llama3_causal_lm import Llama3CausalLM
from keras_hub.src.models.llama3.llama3_causal_lm_preprocessor import (
Expand Down Expand Up @@ -250,6 +253,9 @@
from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
from keras_hub.src.models.sam.sam_image_segmenter import SAMImageSegmenter
from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
SAMImageSegmenterPreprocessor as SamImageSegmenterPreprocessor,
)
from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
Expand Down
73 changes: 73 additions & 0 deletions keras_hub/src/models/image_segmenter_preprocessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import keras

from keras_hub.src.api_export import keras_hub_export
from keras_hub.src.models.preprocessor import Preprocessor
from keras_hub.src.utils.tensor_utils import preprocessing_function


@keras_hub_export("keras_hub.models.ImageSegmenterPreprocessor")
class ImageSegmenterPreprocessor(Preprocessor):
"""Base class for image segmentation preprocessing layers.

`ImageSegmenterPreprocessor` wraps a
`keras_hub.layers.ImageConverter` to create a preprocessing layer for
image segmentation tasks. It is intended to be paired with a
`keras_hub.models.ImageSegmenter` task.

All `ImageSegmenterPreprocessor` instances take three inputs: `x`, `y`, and
`sample_weight`.

- `x`: The first input, should always be included. It can be an image or
a batch of images.
- `y`: (Optional) Usually the segmentation mask(s), will be passed through
unaltered.
- `sample_weight`: (Optional) Will be passed through unaltered.

The layer will output either `x`, an `(x, y)` tuple if labels were provided,
or an `(x, y, sample_weight)` tuple if labels and sample weight were
provided. `x` will be the input images after all model preprocessing has
been applied.

All `ImageSegmenterPreprocessor` tasks include a `from_preset()`
constructor which can be used to load a pre-trained config and vocabularies.
You can call the `from_preset()` constructor directly on this base class, in
which case the correct class for your model will be automatically
instantiated.

Examples.
```python
preprocessor = keras_hub.models.ImageSegmenterPreprocessor.from_preset(
"deeplabv3_resnet50",
)

# Resize a single image for the model.
x = np.ones((512, 512, 3))
x = preprocessor(x)

# Resize an image and its mask.
x, y = np.ones((512, 512, 3)), np.zeros((512, 512, 1))
x, y = preprocessor(x, y)

# Resize a batch of images and masks.
x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
x, y = preprocessor(x, y)

# Use a `tf.data.Dataset`.
ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
```
"""

def __init__(
self,
image_converter=None,
**kwargs,
):
super().__init__(**kwargs)
self.image_converter = image_converter

@preprocessing_function
def call(self, x, y=None, sample_weight=None):
if self.image_converter:
x = self.image_converter(x)
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
10 changes: 10 additions & 0 deletions keras_hub/src/models/sam/sam_image_converter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
from keras_hub.src.api_export import keras_hub_export
from keras_hub.src.layers.preprocessing.resizing_image_converter import (
ResizingImageConverter,
)
from keras_hub.src.models.sam.sam_backbone import SAMBackbone


@keras_hub_export("keras_hub.layers.SAMImageConverter")
class SAMImageConverter(ResizingImageConverter):
backbone_cls = SAMBackbone
6 changes: 5 additions & 1 deletion keras_hub/src/models/sam/sam_image_segmenter.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@
from keras_hub.src.api_export import keras_hub_export
from keras_hub.src.models.image_segmenter import ImageSegmenter
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
SAMImageSegmenterPreprocessor,
)


@keras_hub_export("keras_hub.models.SAMImageSegmenter")
Expand Down Expand Up @@ -165,7 +168,7 @@ class SAMImageSegmenter(ImageSegmenter):
"""

backbone_cls = SAMBackbone
preprocessor_cls = None
preprocessor_cls = SAMImageSegmenterPreprocessor

def __init__(self, backbone, preprocessor=None, **kwargs):
# The implementation has been adapted form [Segment Anything
Expand All @@ -174,6 +177,7 @@ def __init__(self, backbone, preprocessor=None, **kwargs):
# [Detectron2](https://github.com/facebookresearch/detectron2).
# === Layers ===
self.backbone = backbone
self.preprocessor = preprocessor
# === Functional Model ===
inputs = self.backbone.input
x = self.backbone(inputs)
Expand Down
12 changes: 12 additions & 0 deletions keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
from keras_hub.src.api_export import keras_hub_export
from keras_hub.src.models.image_segmenter_preprocessor import (
ImageSegmenterPreprocessor,
)
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter


@keras_hub_export("keras_hub.models.SamImageSegmenterPreprocessor")
class SAMImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
backbone_cls = SAMBackbone
image_converter_cls = SAMImageConverter
34 changes: 34 additions & 0 deletions keras_hub/src/models/sam/sam_presets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
"""SAM preset configurations."""

backbone_presets = {
"sam_base_sa1b": {
"metadata": {
"description": ("The base SAM model trained on the SA1B dataset."),
"params": 93735728,
"official_name": "SAMImageSegmenter",
"path": "sam",
"model_card": "https://arxiv.org/abs/2304.02643",
},
"kaggle_handle": "kaggle://kerashub/sam/keras/sam_base_sa1b/1",
},
"sam_large_sa1b": {
"metadata": {
"description": ("The large SAM model trained on the SA1B dataset."),
"params": 641090864,
"official_name": "SAMImageSegmenter",
"path": "sam",
"model_card": "https://arxiv.org/abs/2304.02643",
},
"kaggle_handle": "kaggle://kerashub/sam/keras/sam_large_sa1b/1",
},
"sam_huge_sa1b": {
"metadata": {
"description": ("The huge SAM model trained on the SA1B dataset."),
"params": 312343088,
"official_name": "SAMImageSegmenter",
"path": "sam",
"model_card": "https://arxiv.org/abs/2304.02643",
},
"kaggle_handle": "kaggle://kerashub/sam/keras/sam_huge_sa1b/1",
},
}
4 changes: 2 additions & 2 deletions keras_hub/src/models/vit_det/vit_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ def __init__(
"Input size must be provided if using relative "
"positional encoding."
)
self.add_decomposed_reative_pe = AddRelativePositionalEmbedding(
self.add_decomposed_relative_pe = AddRelativePositionalEmbedding(
self.input_size, self.key_dim
)

Expand Down Expand Up @@ -241,7 +241,7 @@ def call(self, x):
keys, axes=(0, 2, 1)
)
if self.use_rel_pos:
attention_map = self.add_decomposed_reative_pe(
attention_map = self.add_decomposed_relative_pe(
attention_map,
queries=queries,
query_size=(height, width),
Expand Down
Loading