Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion keras_hub/src/models/llama/llama_backbone.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,13 +90,14 @@ def __init__(
layer_norm_epsilon=1e-6,
dropout=0,
dtype=None,
tie_word_embeddings=False,
**kwargs,
):
# === Layers ===
self.token_embedding = ReversibleEmbedding(
input_dim=vocabulary_size,
output_dim=hidden_dim,
tie_weights=False,
tie_weights=tie_word_embeddings,
embeddings_initializer=_llama_kernel_initializer(stddev=0.01),
dtype=dtype,
name="token_embedding",
Expand Down Expand Up @@ -155,6 +156,7 @@ def __init__(
self.rope_scaling_factor = rope_scaling_factor
self.layer_norm_epsilon = layer_norm_epsilon
self.dropout = dropout
self.tie_word_embeddings = tie_word_embeddings

def get_config(self):
config = super().get_config()
Expand Down
16 changes: 10 additions & 6 deletions keras_hub/src/utils/transformers/convert_llama3.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ def convert_backbone_config(transformers_config):
"hidden_dim": transformers_config["hidden_size"],
"intermediate_dim": transformers_config["intermediate_size"],
"num_key_value_heads": transformers_config["num_key_value_heads"],
"tie_word_embeddings": transformers_config["tie_word_embeddings"],
}


Expand All @@ -22,12 +23,15 @@ def convert_weights(backbone, loader, transformers_config):
keras_variable=backbone.get_layer("token_embedding").embeddings,
hf_weight_key="model.embed_tokens.weight",
)
loader.port_weight(
keras_variable=backbone.get_layer("token_embedding").reverse_embeddings,
hf_weight_key="lm_head.weight",
# rearrange_pattern="b a -> a b",
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
)
if not backbone.tie_word_embeddings:
loader.port_weight(
keras_variable=backbone.get_layer(
"token_embedding"
).reverse_embeddings,
hf_weight_key="lm_head.weight",
# rearrange_pattern="b a -> a b",
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
)

def transpose_and_reshape(x, shape):
return np.reshape(np.transpose(x), shape)
Expand Down