Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 88 additions & 15 deletions tools/gemma/export_gemma_to_hf.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,18 @@
import contextlib
import os
from typing import Optional

import torch
import transformers
from absl import app
from absl import flags

import keras_hub

os.environ["KERAS_BACKEND"] = "torch"

import keras # noqa: F401,E402

import keras_hub # noqa: E402

"""
Sample usage:

Expand Down Expand Up @@ -42,28 +45,79 @@


PRESET_MAP = {
# Gemma 1
"gemma_2b_en": "gg-hf/gemma-2b",
"gemma_instruct_2b_en": "gg-hf/gemma-2b",
"gemma_7b_en": "gg-hf/gemma-7b",
"gemma_instruct_7b_en": "gg-hf/gemma-7b",
# Gemma 2
"gemma2_2b_en": "gg-hf/gemma-2-2b",
"gemma2_instruct_2b_en": "gg-hf/gemma-2-2b-it",
"gemma2_9b_en": "gg-hf/gemma-2-9b",
"gemma2_instruct_9b_en": "gg-hf/gemma-2-9b-it",
"gemma2_27b_en": "gg-hf/gemma-2-27b",
"gemma2_instruct_27b_en": "gg-hf/gemma-2-27b-it",
}

SIZE_MAP = {
"2b": ("gg-hf/gemma-2b", "gemma_2b_en"),
"7b": ("gg-hf/gemma-7b", "gemma_7b_en"),
"v1_2b": ("gg-hf/gemma-2b", "gemma_2b_en"),
"v1_7b": ("gg-hf/gemma-7b", "gemma_7b_en"),
"v2_2b": ("gg-hf/gemma-2-2b", "gemma2_2b_en"),
"v2_9b": ("gg-hf/gemma-2-9b", "gemma2_9b_en"),
"v2_27b": ("gg-hf/gemma-2-27b", "gemma2_27b_en"),
}

gemma_2b_config = transformers.GemmaConfig(
gemma1_2b_config = transformers.GemmaConfig(
num_hidden_layers=18,
num_attention_heads=8,
num_key_value_heads=1,
hidden_size=2048,
intermediate_size=16384,
)

gemma_7b_config = transformers.GemmaConfig()
gemma1_7b_config = transformers.GemmaConfig()

CONFIG_MAPPING = {"2b": gemma_2b_config, "7b": gemma_7b_config}
gemma2_2b_config = transformers.Gemma2Config(
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
hidden_size=2304,
intermediate_size=9216,
)

gemma2_9b_config = transformers.Gemma2Config(
num_hidden_layers=42,
num_attention_heads=16,
num_key_value_heads=8,
hidden_size=3584,
intermediate_size=14336,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
head_dim=256,
sliding_window=4096,
query_pre_attn_scalar=224,
)

gemma2_27b_config = transformers.Gemma2Config(
num_hidden_layers=46,
num_attention_heads=32,
num_key_value_heads=16,
hidden_size=4608,
intermediate_size=36864,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
head_dim=128,
sliding_window=4096,
query_pre_attn_scalar=144,
)

CONFIG_MAPPING = {
"v1_2b": gemma1_2b_config,
"v1_7b": gemma1_7b_config,
"v2_2b": gemma2_2b_config,
"v2_9b": gemma2_9b_config,
"v2_27b": gemma2_27b_config,
}

FLAGS = flags.FLAGS
flags.DEFINE_string(
Expand Down Expand Up @@ -107,6 +161,11 @@
"float32",
"Set the precision of the converted checkpoint. Must be a valid PyTorch dtype.",
)
flags.DEFINE_integer(
"gemma_version",
None,
"Integer denoting the Gemma version (e.g. 1, 2).",
)


@contextlib.contextmanager
Expand All @@ -117,21 +176,34 @@ def _set_default_tensor_type(dtype: torch.dtype):
torch.set_default_dtype(torch.float)


def convert_checkpoints(preset, weights_file, size, output_dir, vocab_path):
def convert_checkpoints(
preset: str,
weights_file: str,
gemma_version: int,
size: str,
output_dir: str,
vocab_path: Optional[str] = None,
):
if preset is not None:
hf_id = PRESET_MAP[preset]
print(f"\n-> Loading KerasHub Gemma model with preset `{preset}`...")
keras_hub_model = keras_hub.models.GemmaCausalLM.from_preset(preset)
else:
hf_id, keras_preset = SIZE_MAP[size.lower()]
hf_id, keras_preset = SIZE_MAP[
f"v{gemma_version.lower()}_{size.lower()}"
]
print(f"\n-> Loading Keras weights from file `{weights_file}`...")
keras_hub_model = keras_hub.models.GemmaCausalLM.from_preset(
keras_preset
)
keras_hub_model.load_weights(weights_file)

print(f"\n-> Loading HuggingFace Gemma `{size.upper()}` model...")
hf_model = transformers.GemmaForCausalLM(CONFIG_MAPPING[size.lower()])
config = CONFIG_MAPPING[f"v{gemma_version}_{size.lower()}"]
if isinstance(config, transformers.GemmaConfig):
hf_model = transformers.GemmaForCausalLM(config)
elif isinstance(config, transformers.Gemma2Config):
hf_model = transformers.Gemma2ForCausalLM(config)

print("\n✅ Model loading complete.")
print("\n-> Converting weights from KerasHub Gemma to HuggingFace Gemma...")
Expand Down Expand Up @@ -322,11 +394,12 @@ def main(_):
flag_error_handler()
with _set_default_tensor_type(getattr(torch, FLAGS.dtype)):
convert_checkpoints(
FLAGS.preset,
FLAGS.weights_file,
FLAGS.size,
FLAGS.output_dir,
FLAGS.vocab_path,
preset=FLAGS.preset,
weights_file=FLAGS.weights_file,
gemma_version=FLAGS.gemma_version,
size=FLAGS.size,
output_dir=FLAGS.output_dir,
vocab_path=FLAGS.vocab_path,
)


Expand Down