Skip to content

kunwarmahen/db-mcp-server

Repository files navigation

Database MCP Server

Query and manage databases through the Model Context Protocol.

Overview

The Database MCP Server provides AI-accessible database operations for PostgreSQL and MongoDB. It enables:

  • PostgreSQL queries and data management
  • MongoDB document operations
  • Automatic schema discovery
  • Network-wide database access through MCP Discovery Hub
  • Zero-configuration deployment with automatic broadcasting

Perfect for building AI applications that need to interact with databases safely and efficiently.

Features

PostgreSQL Support

  • Get server version and database info
  • List tables in any schema
  • Query data with configurable limits
  • Insert new records
  • SQL validation and safety checks

MongoDB Support

  • List collections
  • Find documents with filters
  • Insert documents
  • ObjectId handling and JSON serialization

Network Integration

  • Automatic multicast broadcasting for discovery
  • Multi-transport support (HTTP and streamable-http)
  • Compatible with MCP Discovery Hub
  • Zero-configuration networking

Installation

Prerequisites

  • Python 3.10+
  • PostgreSQL server (or MongoDB, or both)
  • uv package manager (or pip)

Setup

# Clone or navigate to project
cd database-mcp-server

# Install dependencies
uv sync

# Or with pip:
pip install -r requirements.txt

Configuration

Environment Variables

# Transport mode
MCP_TRANSPORT=http                    # http, streamable-http, or stdio (default)

# Server settings
MCP_HOST=0.0.0.0                     # Binding host
MCP_PORT=3002                         # Server port
MCP_SERVER_NAME=Database MCP Server  # Display name

# PostgreSQL
DATABASE_URL=postgresql://user:pass@localhost:5432/dbname
# Or individual settings:
POSTGRES_USER=postgres
POSTGRES_PASSWORD=
POSTGRES_HOST=localhost
POSTGRES_PORT=5432
POSTGRES_DB=postgres

# MongoDB
MONGODB_URL=mongodb://localhost:27017
MONGODB_DB=test

# Broadcasting (for MCP Discovery Hub)
MCP_ENABLE_BROADCAST=true            # Enable/disable broadcasting
MCP_BROADCAST_INTERVAL=30            # Seconds between announcements

.env File

Create a .env file in the project root:

# Database Connections
DATABASE_URL=postgresql://postgres:password@localhost:5432/mydb
MONGODB_URL=mongodb://localhost:27017
MONGODB_DB=mydb

# MCP Server
MCP_TRANSPORT=http
MCP_PORT=3002
MCP_SERVER_NAME=Database MCP Server
MCP_ENABLE_BROADCAST=true
MCP_BROADCAST_INTERVAL=30

Docker Example

# With PostgreSQL in Docker
docker run -d \
  -e POSTGRES_PASSWORD=mypassword \
  -p 5432:5432 \
  postgres:15

# With MongoDB in Docker
docker run -d \
  -p 27017:27017 \
  mongo:latest

# Start MCP server
MCP_TRANSPORT=http MCP_PORT=3002 uv run main.py

Usage

Start in HTTP Mode (with broadcasting)

# Using environment variables
MCP_TRANSPORT=http MCP_PORT=3002 uv run main.py

# Or with .env file
uv run main.py

Start in Streamable-HTTP Mode

MCP_TRANSPORT=streamable-http MCP_PORT=3002 uv run main.py

Start in Stdio Mode (for Claude)

# Default mode, works with Claude Desktop
uv run main.py

Available Tools

PostgreSQL Tools

Get DB Version

pg_version()

Retrieve PostgreSQL server version information

List Tables

pg_list_tables(schema: str = "public")

List all tables in a schema

Example:

{
  "method": "tools/call",
  "params": {
    "name": "pg_list_tables",
    "arguments": { "schema": "public" }
  }
}

List Rows

pg_list_rows(table: str, limit: int = 100)

Query data from a table with limit

Example:

{
  "method": "tools/call",
  "params": {
    "name": "pg_list_rows",
    "arguments": { "table": "users", "limit": 50 }
  }
}

Insert Row

pg_insert_row(table: str, data: dict)

Insert a new record and return the inserted ID

Example:

{
  "method": "tools/call",
  "params": {
    "name": "pg_insert_row",
    "arguments": {
      "table": "users",
      "data": { "name": "John", "email": "john@example.com" }
    }
  }
}

MongoDB Tools

List Collections

mongo_list_collections()

Get all collection names in the database

Find Documents

mongo_find(
  collection: str,
  query: dict = {},
  limit: int = 10
)

Query documents from a collection

Example:

{
  "method": "tools/call",
  "params": {
    "name": "mongo_find",
    "arguments": {
      "collection": "users",
      "query": { "status": "active" },
      "limit": 20
    }
  }
}

Insert Document

mongo_insert(collection: str, doc: dict)

Insert a document into a collection

Example:

{
  "method": "tools/call",
  "params": {
    "name": "mongo_insert",
    "arguments": {
      "collection": "logs",
      "doc": {
        "timestamp": "2024-10-17T10:00:00Z",
        "level": "info",
        "message": "Server started"
      }
    }
  }
}

Integration with MCP Discovery Hub

Automatic Discovery

When broadcasting is enabled, the database server automatically registers:

  1. Server broadcasts: Every 30 seconds on 239.255.255.250:5353
  2. Hub discovers: Discovery hub receives and probes the server
  3. Tools registered: All 7 database tools become available network-wide

Multi-Server Setup

Deploy multiple database servers for different purposes:

Database Server 1 (PostgreSQL, port 3002)
    ↓
Database Server 2 (MongoDB, port 3003)
    ↓
Database Server 3 (Mixed, port 3004)
    ↓
MCP Discovery Hub (port 8000)
    ↓
AI Tool (Claude, etc.)

All servers discovered and available to AI automatically.

API Endpoints (When in HTTP Mode)

GET /

Server information

curl http://localhost:3002/

POST /mcp

MCP protocol endpoint

All MCP communication (initialize, tools/list, tools/call)

Use Cases

1. Data Analysis

AI-powered analysis of your database:

"User: Summarize user activity from the last month"
AI: I'll query the activity logs for you...
→ calls pg_list_rows(table="activity_logs", limit=1000)
→ analyzes and summarizes results

2. Automated Reporting

Generate reports from database data:

"User: Create a report of orders by region"
AI: Let me fetch the order data...
→ calls pg_list_rows(table="orders", limit=10000)
→ groups and aggregates by region
→ generates report

3. Data Entry and Updates

AI-assisted data entry:

"User: Add a new customer with this information"
AI: I'll add them to the database...
→ calls pg_insert_row(table="customers", data={...})

4. Document Search and Retrieval

MongoDB document management:

"User: Find all documents with status pending"
AI: Searching for pending documents...
→ calls mongo_find(collection="tasks", query={"status": "pending"})

5. System Monitoring

Database health and activity monitoring:

"User: Check if there are any slow queries"
AI: Let me check the query logs...
→ calls pg_list_rows(table="query_logs")
→ identifies slow queries

Safety Features

Input Validation

  • Table and column names validated against regex
  • SQL injection prevention through parameterized queries
  • Data type validation for inserts

Error Handling

  • Database connection errors caught and reported
  • Timeout protection (30 seconds default)
  • Clear error messages for debugging

Best Practices

  1. Read-only operations first: Start with queries before modifying data
  2. Use limits: Always set reasonable limits on queries
  3. Monitor logs: Check database_mcp.log for issues
  4. Backup data: Ensure backups before AI access to production
  5. Audit trail: Log all database modifications from MCP

Performance Considerations

  • Query performance: Depends on query complexity and data size
  • Connection pooling: PostgreSQL pool_size=5 for concurrency
  • Broadcasting overhead: Minimal (30-byte UDP packets)
  • Timeout protection: 30-second limit on operations

Optimization Tips

  • Use limit parameter to reduce data transfer
  • Filter documents with query parameter in MongoDB
  • Create appropriate database indexes for common queries
  • Use schema parameter to narrow PostgreSQL searches

Logs

Server logs are written to database_mcp.log:

# View logs
tail -f database_mcp.log

# Check for errors
grep ERROR database_mcp.log

# Monitor database operations
grep "Listing tables\|Inserting\|Finding" database_mcp.log

Troubleshooting

PostgreSQL Connection Error

# Check PostgreSQL is running
psql postgresql://user:pass@localhost:5432/db

# Verify credentials in .env
echo $DATABASE_URL

MongoDB Connection Error

# Check MongoDB is running
mongo --eval "db.version()"

# Verify connection string
echo $MONGODB_URL

Broadcasting Not Working

# Verify multicast is enabled
ip route show | grep 239.255.255.250

# Check firewall settings
sudo firewall-cmd --list-all

Port Already in Use

# Use different port
MCP_PORT=3003 uv run main.py

Performance Metrics

Typical response times:

  • Simple SELECT: 10-50ms
  • Database info queries: 5-20ms
  • MongoDB find operations: 20-100ms
  • Insert operations: 30-200ms (depending on triggers)

Network overhead (with broadcasting):

  • Broadcasting: 0.01% overhead
  • Discovery: One-time cost per server

Requirements

  • Python 3.10+
  • FastAPI
  • SQLAlchemy
  • PyMongo
  • FastMCP
  • python-dotenv

Contributing

Improvements welcome! Potential enhancements:

  • Additional database support (MySQL, SQLite)
  • Stored procedure execution
  • Transaction support
  • Advanced query builder
  • Connection pooling configuration
  • Database replication support

License

MIT License - See LICENSE file for details

Support

  • Issues: Report on GitHub
  • Documentation: See MCP Discovery Hub wiki
  • Examples: Check examples/ directory
  • Database docs: PostgreSQL and MongoDB official documentation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages