@@ -113,28 +113,20 @@ instance has_zero : has_zero (slash_invariant_form Γ k) :=
113113
114114@[simp] lemma coe_zero : ⇑(0 : slash_invariant_form Γ k) = (0 : ℍ → ℂ) := rfl
115115
116- instance has_csmul : has_smul ℂ (slash_invariant_form Γ k) :=
117- ⟨ λ c f, {to_fun := c • f,
118- slash_action_eq' := by {intro γ, convert slash_action.smul_action k γ ⇑f c,
119- exact (f.slash_action_eq' γ).symm}}⟩
116+ section
117+ variables {α : Type *} [has_smul α ℂ] [is_scalar_tower α ℂ ℂ]
120118
121- @[simp] lemma coe_csmul (f : slash_invariant_form Γ k) (n : ℂ) : ⇑(n • f) = n • f := rfl
122- @[simp] lemma csmul_apply (f : slash_invariant_form Γ k) (n : ℂ) (z : ℍ) :
123- (n • f) z = n • (f z) := rfl
124-
125- instance has_nsmul : has_smul ℕ (slash_invariant_form Γ k) :=
126- ⟨ λ c f, ((c : ℂ) • f).copy (c • f) (nsmul_eq_smul_cast _ _ _)⟩
119+ instance has_smul : has_smul α (slash_invariant_form Γ k) :=
120+ ⟨ λ c f,
121+ { to_fun := c • f,
122+ slash_action_eq' := λ γ, by rw [←smul_one_smul ℂ c ⇑f, slash_action.smul_action k γ ⇑f,
123+ slash_action_eqn] }⟩
127124
128- @[simp] lemma coe_nsmul (f : slash_invariant_form Γ k) (n : ℕ ) : ⇑(n • f) = n • f := rfl
129- @[simp] lemma nsmul_apply (f : slash_invariant_form Γ k) (n : ℕ ) (z : ℍ) :
125+ @[simp] lemma coe_smul (f : slash_invariant_form Γ k) (n : α ) : ⇑(n • f) = n • f := rfl
126+ @[simp] lemma smul_apply (f : slash_invariant_form Γ k) (n : α ) (z : ℍ) :
130127 (n • f) z = n • (f z) := rfl
131128
132- instance has_zsmul : has_smul ℤ (slash_invariant_form Γ k) :=
133- ⟨ λ c f, ((c : ℂ) • f).copy (c • f) (zsmul_eq_smul_cast _ _ _)⟩
134-
135- @[simp] lemma coe_zsmul (f : slash_invariant_form Γ k) (n : ℤ) : ⇑(n • f) = n • f := rfl
136- @[simp] lemma zsmul_apply (f : slash_invariant_form Γ k) (n : ℤ) (z : ℍ) :
137- (n • f) z = n • (f z) := rfl
129+ end
138130
139131instance has_neg : has_neg (slash_invariant_form Γ k) :=
140132⟨ λ f,
@@ -151,7 +143,7 @@ instance has_sub : has_sub (slash_invariant_form Γ k) := ⟨ λ f g, f + -g ⟩
151143@[simp] lemma sub_apply (f g : slash_invariant_form Γ k) (z : ℍ) : (f - g) z = f z - g z := rfl
152144
153145instance : add_comm_group (slash_invariant_form Γ k) :=
154- fun_like.coe_injective.add_comm_group _ rfl coe_add coe_neg coe_sub coe_nsmul coe_zsmul
146+ fun_like.coe_injective.add_comm_group _ rfl coe_add coe_neg coe_sub coe_smul coe_smul
155147
156148/--Additive coercion from `slash_invariant_form` to `ℍ → ℂ`.-/
157149def coe_hom : slash_invariant_form Γ k →+ (ℍ → ℂ) :=
0 commit comments