Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 2726e23

Browse files
committed
feat(algebra.group.hom_instances): Define left and right multiplication operators (#11843)
Defines left and right multiplication operators on non unital, non associative semirings. Suggested by @ocfnash for #11073 Co-authored-by: Christopher Hoskin <mans0954@users.noreply.github.com>
1 parent 5008de8 commit 2726e23

File tree

1 file changed

+7
-0
lines changed

1 file changed

+7
-0
lines changed

src/algebra/group/hom_instances.lean

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -228,4 +228,11 @@ lemma add_monoid_hom.map_mul_iff (f : R →+ S) :
228228
(add_monoid_hom.mul : R →+ R →+ R).compr₂ f = (add_monoid_hom.mul.comp f).compl₂ f :=
229229
iff.symm add_monoid_hom.ext_iff₂
230230

231+
/-- The left multiplicaiton map: `(a, b) ↦ a * b`. See also `add_monoid_hom.mul_left`. -/
232+
@[simps] def add_monoid.End.mul_left : R →+ add_monoid.End R := add_monoid_hom.mul
233+
234+
/-- The right multiplicaiton map: `(a, b) ↦ b * a`. See also `add_monoid_hom.mul_right`. -/
235+
@[simps] def add_monoid.End.mul_right : R →+ add_monoid.End R :=
236+
(add_monoid_hom.mul : R →+ add_monoid.End R).flip
237+
231238
end semiring

0 commit comments

Comments
 (0)