|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Yaël Dillies, Bhavik Mehta. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yaël Dillies, Bhavik Mehta |
| 5 | +-/ |
| 6 | +import combinatorics.simple_graph.density |
| 7 | + |
| 8 | +/-! |
| 9 | +# Graph uniformity and uniform partitions |
| 10 | +
|
| 11 | +In this file we define uniformity of a pair of vertices in a graph and uniformity of a partition of |
| 12 | +vertices of a graph. Both are also known as ε-regularity. |
| 13 | +
|
| 14 | +Finsets of vertices `s` and `t` are `ε`-uniform in a graph `G` if their edge density is at most |
| 15 | +`ε`-far from the density of any big enough `s'` and `t'` where `s' ⊆ s`, `t' ⊆ t`. |
| 16 | +The definition is pretty technical, but it amounts to the edges between `s` and `t` being "random" |
| 17 | +The literature contains several definitions which are equivalent up to scaling `ε` by some constant |
| 18 | +when the partition is equitable. |
| 19 | +
|
| 20 | +A partition `P` of the vertices is `ε`-uniform if the proportion of non `ε`-uniform pairs of parts |
| 21 | +is less than `ε`. |
| 22 | +
|
| 23 | +## Main declarations |
| 24 | +
|
| 25 | +* `simple_graph.is_uniform`: Graph uniformity of a pair of finsets of vertices. |
| 26 | +* `finpartition.non_uniforms`: Non uniform pairs of parts of a partition. |
| 27 | +* `finpartition.is_uniform`: Uniformity of a partition. |
| 28 | +-/ |
| 29 | + |
| 30 | +open finset |
| 31 | + |
| 32 | +variables {α 𝕜 : Type*} [linear_ordered_field 𝕜] |
| 33 | + |
| 34 | +/-! ### Graph uniformity -/ |
| 35 | + |
| 36 | +namespace simple_graph |
| 37 | +variables (G : simple_graph α) [decidable_rel G.adj] (ε : 𝕜) {s t : finset α} {a b : α} |
| 38 | + |
| 39 | +/-- A pair of finsets of vertices is `ε`-uniform (aka `ε`-regular) iff their edge density is close |
| 40 | +to the density of any big enough pair of subsets. Intuitively, the edges between them are |
| 41 | +random-like. -/ |
| 42 | +def is_uniform (s t : finset α) : Prop := |
| 43 | +∀ ⦃s'⦄, s' ⊆ s → ∀ ⦃t'⦄, t' ⊆ t → (s.card : 𝕜) * ε ≤ s'.card → (t.card : 𝕜) * ε ≤ t'.card → |
| 44 | + |(G.edge_density s' t' : 𝕜) - (G.edge_density s t : 𝕜)| < ε |
| 45 | + |
| 46 | +variables {G ε} |
| 47 | + |
| 48 | +lemma is_uniform.mono {ε' : 𝕜} (h : ε ≤ ε') (hε : is_uniform G ε s t) : is_uniform G ε' s t := |
| 49 | +λ s' hs' t' ht' hs ht, by refine (hε hs' ht' (le_trans _ hs) (le_trans _ ht)).trans_le h; |
| 50 | + exact mul_le_mul_of_nonneg_left h (nat.cast_nonneg _) |
| 51 | + |
| 52 | +lemma is_uniform.symm : symmetric (is_uniform G ε) := |
| 53 | +λ s t h t' ht' s' hs' ht hs, |
| 54 | + by { rw [edge_density_comm _ t', edge_density_comm _ t], exact h hs' ht' hs ht } |
| 55 | + |
| 56 | +variables (G) |
| 57 | + |
| 58 | +lemma is_uniform_comm : is_uniform G ε s t ↔ is_uniform G ε t s := ⟨λ h, h.symm, λ h, h.symm⟩ |
| 59 | + |
| 60 | +lemma is_uniform_singleton (hε : 0 < ε) : G.is_uniform ε {a} {b} := |
| 61 | +begin |
| 62 | + intros s' hs' t' ht' hs ht, |
| 63 | + rw [card_singleton, nat.cast_one, one_mul] at hs ht, |
| 64 | + obtain rfl | rfl := finset.subset_singleton_iff.1 hs', |
| 65 | + { exact (hε.not_le hs).elim }, |
| 66 | + obtain rfl | rfl := finset.subset_singleton_iff.1 ht', |
| 67 | + { exact (hε.not_le ht).elim }, |
| 68 | + { rwa [sub_self, abs_zero] } |
| 69 | +end |
| 70 | + |
| 71 | +lemma not_is_uniform_zero : ¬ G.is_uniform (0 : 𝕜) s t := |
| 72 | +λ h, (abs_nonneg _).not_lt $ h (empty_subset _) (empty_subset _) (by simp) (by simp) |
| 73 | + |
| 74 | +lemma is_uniform_one : G.is_uniform (1 : 𝕜) s t := |
| 75 | +begin |
| 76 | + intros s' hs' t' ht' hs ht, |
| 77 | + rw mul_one at hs ht, |
| 78 | + rw [eq_of_subset_of_card_le hs' (nat.cast_le.1 hs), |
| 79 | + eq_of_subset_of_card_le ht' (nat.cast_le.1 ht), sub_self, abs_zero], |
| 80 | + exact zero_lt_one, |
| 81 | +end |
| 82 | + |
| 83 | +end simple_graph |
| 84 | + |
| 85 | +/-! ### Uniform partitions -/ |
| 86 | + |
| 87 | +variables [decidable_eq α] {s : finset α} (P : finpartition s) (G : simple_graph α) |
| 88 | + [decidable_rel G.adj] {ε : 𝕜} |
| 89 | + |
| 90 | +namespace finpartition |
| 91 | +open_locale classical |
| 92 | + |
| 93 | +/-- The pairs of parts of a partition `P` which are not `ε`-uniform in a graph `G`. Note that we |
| 94 | +dismiss the diagonal. We do not care whether `s` is `ε`-uniform with itself. -/ |
| 95 | +noncomputable def non_uniforms (ε : 𝕜) : finset (finset α × finset α) := |
| 96 | +P.parts.off_diag.filter $ λ uv, ¬G.is_uniform ε uv.1 uv.2 |
| 97 | + |
| 98 | +lemma mk_mem_non_uniforms_iff (u v : finset α) (ε : 𝕜) : |
| 99 | + (u, v) ∈ P.non_uniforms G ε ↔ u ∈ P.parts ∧ v ∈ P.parts ∧ u ≠ v ∧ ¬G.is_uniform ε u v := |
| 100 | +by rw [non_uniforms, mem_filter, mem_off_diag, and_assoc, and_assoc] |
| 101 | + |
| 102 | +/-- A finpartition is `ε`-uniform (aka `ε`-regular) iff at most a proportion of `ε` of its pairs of |
| 103 | +parts are not `ε-uniform`. -/ |
| 104 | +def is_uniform (ε : 𝕜) : Prop := |
| 105 | +((P.non_uniforms G ε).card : 𝕜) ≤ (P.parts.card * (P.parts.card - 1) : ℕ) * ε |
| 106 | + |
| 107 | +lemma non_uniforms_bot (hε : 0 < ε) : (⊥ : finpartition s).non_uniforms G ε = ∅ := |
| 108 | +begin |
| 109 | + rw eq_empty_iff_forall_not_mem, |
| 110 | + rintro ⟨u, v⟩, |
| 111 | + simp only [finpartition.mk_mem_non_uniforms_iff, finpartition.parts_bot, mem_map, not_and, |
| 112 | + not_not, exists_imp_distrib], |
| 113 | + rintro x hx rfl y hy rfl h, |
| 114 | + exact G.is_uniform_singleton hε, |
| 115 | +end |
| 116 | + |
| 117 | +lemma bot_is_uniform (hε : 0 < ε) : (⊥ : finpartition s).is_uniform G ε := |
| 118 | +begin |
| 119 | + rw [finpartition.is_uniform, finpartition.card_bot, non_uniforms_bot _ hε, |
| 120 | + finset.card_empty, nat.cast_zero], |
| 121 | + exact mul_nonneg (nat.cast_nonneg _) hε.le, |
| 122 | +end |
| 123 | + |
| 124 | +lemma is_uniform_one : P.is_uniform G (1 : 𝕜) := |
| 125 | +begin |
| 126 | + rw [is_uniform, mul_one, nat.cast_le], |
| 127 | + refine (card_filter_le _ _).trans _, |
| 128 | + rw [off_diag_card, nat.mul_sub_left_distrib, mul_one], |
| 129 | +end |
| 130 | + |
| 131 | +variables {P G} |
| 132 | + |
| 133 | +lemma is_uniform_of_empty (hP : P.parts = ∅) : P.is_uniform G ε := |
| 134 | +by simp [is_uniform, hP, non_uniforms] |
| 135 | + |
| 136 | +lemma nonempty_of_not_uniform (h : ¬ P.is_uniform G ε) : P.parts.nonempty := |
| 137 | +nonempty_of_ne_empty $ λ h₁, h $ is_uniform_of_empty h₁ |
| 138 | + |
| 139 | +end finpartition |
0 commit comments