Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 2e83666

Browse files
committed
feat(topology/continuous_function/algebra): functoriality of C(⬝, A) into star algebras. (#16817)
This is one of the two functors involved in Gelfand duality.
1 parent 083202d commit 2e83666

File tree

1 file changed

+31
-0
lines changed

1 file changed

+31
-0
lines changed

src/topology/continuous_function/algebra.lean

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ import topology.uniform_space.compact_convergence
1010
import topology.algebra.star
1111
import algebra.algebra.subalgebra.basic
1212
import tactic.field_simp
13+
import algebra.star.star_alg_hom
1314

1415
/-!
1516
# Algebraic structures over continuous functions
@@ -835,4 +836,34 @@ instance [has_star R] [has_star β] [has_smul R β] [star_module R β]
835836

836837
end star_structure
837838

839+
variables {X Y Z : Type*} [topological_space X] [topological_space Y] [topological_space Z]
840+
variables (𝕜 : Type*) [comm_semiring 𝕜]
841+
variables (A : Type*) [topological_space A] [semiring A] [topological_semiring A] [star_ring A]
842+
variables [has_continuous_star A] [algebra 𝕜 A]
843+
844+
/-- The functorial map taking `f : C(X, Y)` to `C(Y, A) →⋆ₐ[𝕜] C(X, A)` given by pre-composition
845+
with the continuous function `f`. See `continuous_map.comp_monoid_hom'` and
846+
`continuous_map.comp_add_monoid_hom'`, `continuous_map.comp_right_alg_hom` for bundlings of
847+
pre-composition into a `monoid_hom`, an `add_monoid_hom` and an `alg_hom`, respectively, under
848+
suitable assumptions on `A`. -/
849+
@[simps] def comp_star_alg_hom' (f : C(X, Y)) : C(Y, A) →⋆ₐ[𝕜] C(X, A) :=
850+
{ to_fun := λ g, g.comp f,
851+
map_one' := one_comp _,
852+
map_mul' := λ _ _, rfl,
853+
map_zero' := zero_comp _,
854+
map_add' := λ _ _, rfl,
855+
commutes' := λ _, rfl,
856+
map_star' := λ _, rfl }
857+
858+
/-- `continuous_map.comp_star_alg_hom'` sends the identity continuous map to the identity
859+
`star_alg_hom` -/
860+
lemma comp_star_alg_hom'_id :
861+
comp_star_alg_hom' 𝕜 A (continuous_map.id X) = star_alg_hom.id 𝕜 C(X, A) :=
862+
star_alg_hom.ext $ λ _, continuous_map.ext $ λ _, rfl
863+
864+
/-- `continuous_map.comp_star_alg_hom` is functorial. -/
865+
lemma comp_star_alg_hom'_comp (g : C(Y, Z)) (f : C(X, Y)) :
866+
comp_star_alg_hom' 𝕜 A (g.comp f) = (comp_star_alg_hom' 𝕜 A f).comp (comp_star_alg_hom' 𝕜 A g) :=
867+
star_alg_hom.ext $ λ _, continuous_map.ext $ λ _, rfl
868+
838869
end continuous_map

0 commit comments

Comments
 (0)