Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 8e3e79a

Browse files
committed
feat(category_theory/pi): extract components of isomorphisms of indexed objects (#6086)
From `lean-liquid`. Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
1 parent f075a69 commit 8e3e79a

File tree

1 file changed

+14
-0
lines changed

1 file changed

+14
-0
lines changed

src/category_theory/pi/basic.lean

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -114,6 +114,20 @@ def sum : (Π i, C i) ⥤ (Π j, D j) ⥤ (Π s : I ⊕ J, sum.elim C D s) :=
114114

115115
end
116116

117+
variables {C}
118+
119+
/-- An isomorphism between `I`-indexed objects gives an isomorphism between each
120+
pair of corresponding components. -/
121+
@[simps] def iso_app {X Y : Π i, C i} (f : X ≅ Y) (i : I) : X i ≅ Y i :=
122+
⟨f.hom i, f.inv i, by { dsimp, rw [← comp_apply, iso.hom_inv_id, id_apply] },
123+
by { dsimp, rw [← comp_apply, iso.inv_hom_id, id_apply] }⟩
124+
125+
@[simp] lemma iso_app_refl (X : Π i, C i) (i : I) : iso_app (iso.refl X) i = iso.refl (X i) := rfl
126+
@[simp] lemma iso_app_symm {X Y : Π i, C i} (f : X ≅ Y) (i : I) :
127+
iso_app f.symm i = (iso_app f i).symm := rfl
128+
@[simp] lemma iso_app_trans {X Y Z : Π i, C i} (f : X ≅ Y) (g : Y ≅ Z) (i : I) :
129+
iso_app (f ≪≫ g) i = iso_app f i ≪≫ iso_app g i := rfl
130+
117131
end pi
118132

119133
namespace functor

0 commit comments

Comments
 (0)