Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit d71e06c

Browse files
committed
feat(topology/algebra/monoid): construct a unit from limits of units and their inverses (#12760)
1 parent f9dc84e commit d71e06c

File tree

1 file changed

+11
-0
lines changed

1 file changed

+11
-0
lines changed

src/topology/algebra/monoid.lean

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -90,6 +90,17 @@ lemma filter.tendsto.mul_const (b : M) {c : M} {f : α → M} {l : filter α}
9090
(h : tendsto (λ (k:α), f k) l (𝓝 c)) : tendsto (λ (k:α), f k * b) l (𝓝 (c * b)) :=
9191
h.mul tendsto_const_nhds
9292

93+
/-- Construct a unit from limits of units and their inverses. -/
94+
@[to_additive filter.tendsto.add_units "Construct an additive unit from limits of additive units
95+
and their negatives.", simps]
96+
def filter.tendsto.units [topological_space N] [monoid N] [has_continuous_mul N] [t2_space N]
97+
{f : ι → Nˣ} {r₁ r₂ : N} {l : filter ι} [l.ne_bot]
98+
(h₁ : tendsto (λ x, ↑(f x)) l (𝓝 r₁)) (h₂ : tendsto (λ x, ↑(f x)⁻¹) l (𝓝 r₂)) : Nˣ :=
99+
{ val := r₁,
100+
inv := r₂,
101+
val_inv := tendsto_nhds_unique (by simpa using h₁.mul h₂) tendsto_const_nhds,
102+
inv_val := tendsto_nhds_unique (by simpa using h₂.mul h₁) tendsto_const_nhds }
103+
93104
@[to_additive]
94105
lemma continuous_at.mul {f g : X → M} {x : X} (hf : continuous_at f x) (hg : continuous_at g x) :
95106
continuous_at (λx, f x * g x) x :=

0 commit comments

Comments
 (0)