@@ -6,7 +6,6 @@ Authors: Andrew Yang
66import category_theory.sites.limits
77import category_theory.functor.flat
88import category_theory.limits.preserves.filtered
9- import category_theory.sites.left_exact
109
1110/-!
1211# Cover-preserving functors between sites.
@@ -25,10 +24,6 @@ if it pushes compatible families of elements to compatible families.
2524 compatible-preserving functor.
2625* `category_theory.sites.pullback`: the induced functor `Sheaf K A ⥤ Sheaf J A` for a
2726 cover-preserving and compatible-preserving functor `G : (C, J) ⥤ (D, K)`.
28- * `category_theory.sites.pushforward`: the induced functor `Sheaf J A ⥤ Sheaf K A` for a
29- cover-preserving and compatible-preserving functor `G : (C, J) ⥤ (D, K)`.
30- * `category_theory.sites.pushforward`: the induced functor `Sheaf J A ⥤ Sheaf K A` for a
31- cover-preserving and compatible-preserving functor `G : (C, J) ⥤ (D, K)`.
3227
3328## Main results
3429
@@ -224,48 +219,3 @@ if `G` is cover-preserving and compatible-preserving.
224219 map_comp' := λ _ _ _ f g, by { ext1, apply (((whiskering_left _ _ _).obj G.op)).map_comp } }
225220
226221end category_theory
227-
228- namespace category_theory
229-
230- variables {C : Type v₁} [small_category C] {D : Type v₁} [small_category D]
231- variables (A : Type u₂) [category.{v₁} A]
232- variables (J : grothendieck_topology C) (K : grothendieck_topology D)
233-
234- instance [has_limits A] : creates_limits (Sheaf_to_presheaf J A) :=
235- category_theory.Sheaf.category_theory.Sheaf_to_presheaf.category_theory.creates_limits.{u₂ v₁ v₁}
236-
237- -- The assumptions so that we have sheafification
238- variables [concrete_category.{v₁} A] [preserves_limits (forget A)] [has_colimits A] [has_limits A]
239- variables [preserves_filtered_colimits (forget A)] [reflects_isomorphisms (forget A)]
240-
241- local attribute [instance] reflects_limits_of_reflects_isomorphisms
242-
243- instance {X : C} : is_cofiltered (J.cover X) := infer_instance
244-
245- /-- The pushforward functor `Sheaf J A ⥤ Sheaf K A` associated to a functor `G : C ⥤ D` in the
246- same direction as `G`. -/
247- @[simps] def sites.pushforward (G : C ⥤ D) : Sheaf J A ⥤ Sheaf K A :=
248- Sheaf_to_presheaf J A ⋙ Lan G.op ⋙ presheaf_to_Sheaf K A
249-
250- instance (G : C ⥤ D) [representably_flat G] :
251- preserves_finite_limits (sites.pushforward A J K G) :=
252- begin
253- apply_with comp_preserves_finite_limits { instances := ff },
254- { apply_instance },
255- apply_with comp_preserves_finite_limits { instances := ff },
256- { apply category_theory.Lan_preserves_finite_limits_of_flat },
257- { apply category_theory.presheaf_to_Sheaf.limits.preserves_finite_limits.{u₂ v₁ v₁},
258- apply_instance }
259- end
260-
261- /-- The pushforward functor is left adjoint to the pullback functor. -/
262- def sites.pullback_pushforward_adjunction {G : C ⥤ D} (hG₁ : compatible_preserving K G)
263- (hG₂ : cover_preserving J K G) : sites.pushforward A J K G ⊣ sites.pullback A hG₁ hG₂ :=
264- ((Lan.adjunction A G.op).comp (sheafification_adjunction K A)).restrict_fully_faithful
265- (Sheaf_to_presheaf J A) (𝟭 _)
266- (nat_iso.of_components (λ _, iso.refl _)
267- (λ _ _ _,(category.comp_id _).trans (category.id_comp _).symm))
268- (nat_iso.of_components (λ _, iso.refl _)
269- (λ _ _ _,(category.comp_id _).trans (category.id_comp _).symm))
270-
271- end category_theory
0 commit comments