@@ -445,24 +445,24 @@ continuous_smul.comp_strongly_measurable (hf.prod_mk strongly_measurable_const)
445445end arithmetic
446446
447447section mul_action
448-
449- variables [topological_space β] {G : Type *} [group G] [mul_action G β]
450- [has_continuous_const_smul G β]
448+ variables {M G G₀ : Type *}
449+ variables [topological_space β]
450+ variables [monoid M] [mul_action M β] [has_continuous_const_smul M β]
451+ variables [group G] [mul_action G β] [has_continuous_const_smul G β]
452+ variables [group_with_zero G₀] [mul_action G₀ β] [has_continuous_const_smul G₀ β]
451453
452454lemma _root_.strongly_measurable_const_smul_iff {m : measurable_space α} (c : G) :
453455 strongly_measurable (λ x, c • f x) ↔ strongly_measurable f :=
454456⟨λ h, by simpa only [inv_smul_smul] using h.const_smul' c⁻¹, λ h, h.const_smul c⟩
455457
456- variables {G₀ : Type *} [group_with_zero G₀] [mul_action G₀ β]
457- [has_continuous_const_smul G₀ β]
458+ lemma _root_.is_unit.strongly_measurable_const_smul_iff {m : measurable_space α} {c : M}
459+ (hc : is_unit c) :
460+ strongly_measurable (λ x, c • f x) ↔ strongly_measurable f :=
461+ let ⟨u, hu⟩ := hc in hu ▸ strongly_measurable_const_smul_iff u
458462
459463lemma _root_.strongly_measurable_const_smul_iff₀ {m : measurable_space α} {c : G₀} (hc : c ≠ 0 ) :
460464 strongly_measurable (λ x, c • f x) ↔ strongly_measurable f :=
461- begin
462- refine ⟨λ h, _, λ h, h.const_smul c⟩,
463- convert h.const_smul' c⁻¹,
464- simp [smul_smul, inv_mul_cancel hc]
465- end
465+ (is_unit.mk0 _ hc).strongly_measurable_const_smul_iff
466466
467467end mul_action
468468
@@ -1667,23 +1667,22 @@ end normed_space
16671667
16681668section mul_action
16691669
1670- variables {G : Type *} [group G] [mul_action G β]
1671- [has_continuous_const_smul G β]
1670+ variables {M G G₀ : Type *}
1671+ variables [monoid M] [mul_action M β] [has_continuous_const_smul M β]
1672+ variables [group G] [mul_action G β] [has_continuous_const_smul G β]
1673+ variables [group_with_zero G₀] [mul_action G₀ β] [has_continuous_const_smul G₀ β]
16721674
16731675lemma _root_.ae_strongly_measurable_const_smul_iff (c : G) :
16741676 ae_strongly_measurable (λ x, c • f x) μ ↔ ae_strongly_measurable f μ :=
16751677⟨λ h, by simpa only [inv_smul_smul] using h.const_smul' c⁻¹, λ h, h.const_smul c⟩
16761678
1677- variables {G₀ : Type *} [group_with_zero G₀] [mul_action G₀ β]
1678- [has_continuous_const_smul G₀ β]
1679+ lemma _root_.is_unit.ae_strongly_measurable_const_smul_iff {c : M} (hc : is_unit c) :
1680+ ae_strongly_measurable (λ x, c • f x) μ ↔ ae_strongly_measurable f μ :=
1681+ let ⟨u, hu⟩ := hc in hu ▸ ae_strongly_measurable_const_smul_iff u
16791682
16801683lemma _root_.ae_strongly_measurable_const_smul_iff₀ {c : G₀} (hc : c ≠ 0 ) :
16811684 ae_strongly_measurable (λ x, c • f x) μ ↔ ae_strongly_measurable f μ :=
1682- begin
1683- refine ⟨λ h, _, λ h, h.const_smul c⟩,
1684- convert h.const_smul' c⁻¹,
1685- simp [smul_smul, inv_mul_cancel hc]
1686- end
1685+ (is_unit.mk0 _ hc).ae_strongly_measurable_const_smul_iff
16871686
16881687end mul_action
16891688
0 commit comments