Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ef95945

Browse files
committed
feat(measure_theory/function/strongly_measurable/basic): generalize to is_unit c from c ≠ 0 (#19081)
We already have this generalization for `measurable_const_smul_iff` and `ae_measurable_const_smul_iff`.
1 parent 0372d31 commit ef95945

File tree

1 file changed

+18
-19
lines changed
  • src/measure_theory/function/strongly_measurable

1 file changed

+18
-19
lines changed

src/measure_theory/function/strongly_measurable/basic.lean

Lines changed: 18 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -445,24 +445,24 @@ continuous_smul.comp_strongly_measurable (hf.prod_mk strongly_measurable_const)
445445
end arithmetic
446446

447447
section mul_action
448-
449-
variables [topological_space β] {G : Type*} [group G] [mul_action G β]
450-
[has_continuous_const_smul G β]
448+
variables {M G G₀ : Type*}
449+
variables [topological_space β]
450+
variables [monoid M] [mul_action M β] [has_continuous_const_smul M β]
451+
variables [group G] [mul_action G β] [has_continuous_const_smul G β]
452+
variables [group_with_zero G₀] [mul_action G₀ β] [has_continuous_const_smul G₀ β]
451453

452454
lemma _root_.strongly_measurable_const_smul_iff {m : measurable_space α} (c : G) :
453455
strongly_measurable (λ x, c • f x) ↔ strongly_measurable f :=
454456
⟨λ h, by simpa only [inv_smul_smul] using h.const_smul' c⁻¹, λ h, h.const_smul c⟩
455457

456-
variables {G₀ : Type*} [group_with_zero G₀] [mul_action G₀ β]
457-
[has_continuous_const_smul G₀ β]
458+
lemma _root_.is_unit.strongly_measurable_const_smul_iff {m : measurable_space α} {c : M}
459+
(hc : is_unit c) :
460+
strongly_measurable (λ x, c • f x) ↔ strongly_measurable f :=
461+
let ⟨u, hu⟩ := hc in hu ▸ strongly_measurable_const_smul_iff u
458462

459463
lemma _root_.strongly_measurable_const_smul_iff₀ {m : measurable_space α} {c : G₀} (hc : c ≠ 0) :
460464
strongly_measurable (λ x, c • f x) ↔ strongly_measurable f :=
461-
begin
462-
refine ⟨λ h, _, λ h, h.const_smul c⟩,
463-
convert h.const_smul' c⁻¹,
464-
simp [smul_smul, inv_mul_cancel hc]
465-
end
465+
(is_unit.mk0 _ hc).strongly_measurable_const_smul_iff
466466

467467
end mul_action
468468

@@ -1667,23 +1667,22 @@ end normed_space
16671667

16681668
section mul_action
16691669

1670-
variables {G : Type*} [group G] [mul_action G β]
1671-
[has_continuous_const_smul G β]
1670+
variables {M G G₀ : Type*}
1671+
variables [monoid M] [mul_action M β] [has_continuous_const_smul M β]
1672+
variables [group G] [mul_action G β] [has_continuous_const_smul G β]
1673+
variables [group_with_zero G₀] [mul_action G₀ β] [has_continuous_const_smul G₀ β]
16721674

16731675
lemma _root_.ae_strongly_measurable_const_smul_iff (c : G) :
16741676
ae_strongly_measurable (λ x, c • f x) μ ↔ ae_strongly_measurable f μ :=
16751677
⟨λ h, by simpa only [inv_smul_smul] using h.const_smul' c⁻¹, λ h, h.const_smul c⟩
16761678

1677-
variables {G₀ : Type*} [group_with_zero G₀] [mul_action G₀ β]
1678-
[has_continuous_const_smul G₀ β]
1679+
lemma _root_.is_unit.ae_strongly_measurable_const_smul_iff {c : M} (hc : is_unit c) :
1680+
ae_strongly_measurable (λ x, c • f x) μ ↔ ae_strongly_measurable f μ :=
1681+
let ⟨u, hu⟩ := hc in hu ▸ ae_strongly_measurable_const_smul_iff u
16791682

16801683
lemma _root_.ae_strongly_measurable_const_smul_iff₀ {c : G₀} (hc : c ≠ 0) :
16811684
ae_strongly_measurable (λ x, c • f x) μ ↔ ae_strongly_measurable f μ :=
1682-
begin
1683-
refine ⟨λ h, _, λ h, h.const_smul c⟩,
1684-
convert h.const_smul' c⁻¹,
1685-
simp [smul_smul, inv_mul_cancel hc]
1686-
end
1685+
(is_unit.mk0 _ hc).ae_strongly_measurable_const_smul_iff
16871686

16881687
end mul_action
16891688

0 commit comments

Comments
 (0)