Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fa4a805

Browse files
committed
feat(order/category): Forgetful functor NonemptyFinLinOrd ⥤ FinPartOrd (#18948)
Also fix a wrong docstring
1 parent 3905fa8 commit fa4a805

File tree

1 file changed

+14
-1
lines changed

1 file changed

+14
-1
lines changed

src/order/category/NonemptyFinLinOrd.lean

Lines changed: 14 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Johan Commelin
55
-/
66
import data.fintype.order
77
import data.set.finite
8+
import order.category.FinPartOrd
89
import order.category.LinOrd
910
import category_theory.limits.shapes.images
1011
import category_theory.limits.shapes.regular_mono
@@ -17,6 +18,9 @@ import category_theory.limits.shapes.regular_mono
1718
1819
This defines `NonemptyFinLinOrd`, the category of nonempty finite linear orders with monotone maps.
1920
This is the index category for simplicial objects.
21+
22+
Note: `NonemptyFinLinOrd` is *not* a subcategory of `FinBddDistLat` because its morphisms do not
23+
preserve `⊥` and `⊤`.
2024
-/
2125

2226
universes u v
@@ -68,6 +72,9 @@ instance (α : NonemptyFinLinOrd) : nonempty_fin_lin_ord α := α.str
6872
instance has_forget_to_LinOrd : has_forget₂ NonemptyFinLinOrd LinOrd :=
6973
bundled_hom.forget₂ _ _
7074

75+
instance has_forget_to_FinPartOrd : has_forget₂ NonemptyFinLinOrd FinPartOrd :=
76+
{ forget₂ := { obj := λ X, FinPartOrd.of X, map := λ X Y, id } }
77+
7178
/-- Constructs an equivalence between nonempty finite linear orders from an order isomorphism
7279
between them. -/
7380
@[simps] def iso.mk {α β : NonemptyFinLinOrd.{u}} (e : α ≃o β) : α ≅ β :=
@@ -80,7 +87,7 @@ between them. -/
8087
@[simps] def dual : NonemptyFinLinOrd ⥤ NonemptyFinLinOrd :=
8188
{ obj := λ X, of Xᵒᵈ, map := λ X Y, order_hom.dual }
8289

83-
/-- The equivalence between `FinPartOrd` and itself induced by `order_dual` both ways. -/
90+
/-- The equivalence between `NonemptyFinLinOrd` and itself induced by `order_dual` both ways. -/
8491
@[simps functor inverse] def dual_equiv : NonemptyFinLinOrd ≌ NonemptyFinLinOrd :=
8592
equivalence.mk dual dual
8693
(nat_iso.of_components (λ X, iso.mk $ order_iso.dual_dual X) $ λ X Y f, rfl)
@@ -182,3 +189,9 @@ end NonemptyFinLinOrd
182189
lemma NonemptyFinLinOrd_dual_comp_forget_to_LinOrd :
183190
NonemptyFinLinOrd.dual ⋙ forget₂ NonemptyFinLinOrd LinOrd =
184191
forget₂ NonemptyFinLinOrd LinOrd ⋙ LinOrd.dual := rfl
192+
193+
/-- The forgetful functor `NonemptyFinLinOrd ⥤ FinPartOrd` and `order_dual` commute. -/
194+
def NonemptyFinLinOrd_dual_comp_forget_to_FinPartOrd :
195+
NonemptyFinLinOrd.dual ⋙ forget₂ NonemptyFinLinOrd FinPartOrd ≅
196+
forget₂ NonemptyFinLinOrd FinPartOrd ⋙ FinPartOrd.dual :=
197+
{ hom := { app := λ X, order_hom.id }, inv := { app := λ X, order_hom.id } }

0 commit comments

Comments
 (0)