@@ -154,17 +154,6 @@ theorem Topology.IsInducing.continuousConstSMul {N β : Type*} [SMul N β] [Topo
154154 continuous_const_smul c := by
155155 simpa only [Function.comp_def, hf, hg.continuous_iff] using hg.continuous.const_smul (f c)
156156
157- end SMul
158-
159- section Monoid
160-
161- variable [TopologicalSpace α]
162- variable [Monoid M] [MulAction M α] [ContinuousConstSMul M α]
163-
164- @[to_additive]
165- instance Units.continuousConstSMul : ContinuousConstSMul Mˣ α where
166- continuous_const_smul m := continuous_const_smul (m : M)
167-
168157@[to_additive]
169158theorem smul_closure_subset (c : M) (s : Set α) : c • closure s ⊆ closure (c • s) :=
170159 ((Set.mapsTo_image _ _).closure <| continuous_const_smul c).image_subset
@@ -175,18 +164,29 @@ theorem set_smul_closure_subset (s : Set M) (t : Set α) : s • closure t ⊆ c
175164 exact iUnion₂_subset fun c hc ↦ (smul_closure_subset c t).trans <| closure_mono <|
176165 subset_biUnion_of_mem (u := (· • t)) hc
177166
178- @[to_additive]
179- theorem smul_closure_orbit_subset (c : M) (x : α) :
180- c • closure (MulAction.orbit M x) ⊆ closure (MulAction.orbit M x) :=
181- (smul_closure_subset c _).trans <| closure_mono <| MulAction.smul_orbit_subset _ _
182-
183- theorem isClosed_setOf_map_smul {N : Type *} [Monoid N] (α β) [MulAction M α] [MulAction N β]
167+ theorem isClosed_setOf_map_smul {N : Type *} (α β) [SMul M α] [SMul N β]
184168 [TopologicalSpace β] [T2Space β] [ContinuousConstSMul N β] (σ : M → N) :
185169 IsClosed { f : α → β | ∀ c x, f (c • x) = σ c • f x } := by
186170 simp only [Set.setOf_forall]
187171 exact isClosed_iInter fun c => isClosed_iInter fun x =>
188172 isClosed_eq (continuous_apply _) ((continuous_apply _).const_smul _)
189173
174+ end SMul
175+
176+ section Monoid
177+
178+ variable [TopologicalSpace α]
179+ variable [Monoid M] [MulAction M α] [ContinuousConstSMul M α]
180+
181+ @[to_additive]
182+ instance Units.continuousConstSMul : ContinuousConstSMul Mˣ α where
183+ continuous_const_smul m := continuous_const_smul (m : M)
184+
185+ @[to_additive]
186+ theorem smul_closure_orbit_subset (c : M) (x : α) :
187+ c • closure (MulAction.orbit M x) ⊆ closure (MulAction.orbit M x) :=
188+ (smul_closure_subset c _).trans <| closure_mono <| MulAction.smul_orbit_subset _ _
189+
190190end Monoid
191191
192192section Group
0 commit comments