File tree Expand file tree Collapse file tree 1 file changed +27
-0
lines changed 
Mathlib/CategoryTheory/Presentable Expand file tree Collapse file tree 1 file changed +27
-0
lines changed Original file line number Diff line number Diff line change @@ -199,4 +199,31 @@ instance isCardinalFiltered_under
199199              dsimp at this ⊢
200200              simp only [reassoc_of% this, Category.comp_id] } }⟩
201201
202+ instance  isCardinalFiltered_prod  (J₁ : Type  u) (J₂ : Type  u')
203+     [Category.{v} J₁] [Category.{v'} J₂] (κ : Cardinal.{w}) [Fact κ.IsRegular]
204+     [IsCardinalFiltered J₁ κ] [IsCardinalFiltered J₂ κ] :
205+     IsCardinalFiltered (J₁ × J₂) κ where 
206+   nonempty_cocone F hC := ⟨by 
207+     let  c₁ := cocone (F ⋙ Prod.fst _ _) hC
208+     let  c₂ := cocone (F ⋙ Prod.snd _ _) hC
209+     exact
210+       { pt := (c₁.pt, c₂.pt)
211+         ι.app i := (c₁.ι.app i, c₂.ι.app i)
212+         ι.naturality {i j} f := by 
213+           ext
214+           · simpa using c₁.w f
215+           · simpa using c₂.w f }⟩
216+ 
217+ instance  isCardinalFiltered_pi  {ι : Type  u'} (J : ι → Type  u) [∀ i, Category.{v} (J i)]
218+     (κ : Cardinal.{w}) [Fact κ.IsRegular] [∀ i, IsCardinalFiltered (J i) κ] :
219+     IsCardinalFiltered (∀ i, J i) κ where 
220+   nonempty_cocone F hC := ⟨by 
221+     let  c (i : ι) := cocone (F ⋙ Pi.eval J i) hC
222+     exact
223+       { pt i := (c i).pt
224+         ι.app X i := (c i).ι.app X
225+         ι.naturality {X Y} f := by 
226+           ext i
227+           simpa using (c i).ι.naturality f }⟩
228+ 
202229end  CategoryTheory
 
 
   
 
     
   
   
          
    
    
     
    
      
     
     
    You can’t perform that action at this time.
  
 
    
  
    
      
        
     
       
      
     
   
 
    
    
  
 
  
 
     
    
0 commit comments