@@ -438,35 +438,25 @@ instance distribLattice : DistribLattice G.Subgraph :=
438438 le := fun x y => x.verts ⊆ y.verts ∧ ∀ ⦃v w : V⦄, x.Adj v w → y.Adj v w }
439439
440440instance : BoundedOrder (Subgraph G) where
441- top := ⊤
442- bot := ⊥
443441 le_top x := ⟨Set.subset_univ _, fun _ _ => x.adj_sub⟩
444442 bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩
445443
446444/-- Note that subgraphs do not form a Boolean algebra, because of `verts`. -/
447- def completelyDistribLatticeMinimalAxioms : CompletelyDistribLattice.MinimalAxioms G.Subgraph :=
448- { Subgraph.distribLattice with
449- le := (· ≤ ·)
450- sup := (· ⊔ ·)
451- inf := (· ⊓ ·)
452- top := ⊤
453- bot := ⊥
454- le_top := fun G' => ⟨Set.subset_univ _, fun _ _ => G'.adj_sub⟩
455- bot_le := fun _ => ⟨Set.empty_subset _, fun _ _ => False.elim⟩
456- sSup := sSup
457- -- Porting note: needed `apply` here to modify elaboration; previously the term itself was fine.
458- le_sSup := fun s G' hG' => ⟨by apply Set.subset_iUnion₂ G' hG', fun _ _ hab => ⟨G', hG', hab⟩⟩
459- sSup_le := fun s G' hG' =>
460- ⟨Set.iUnion₂_subset fun _ hH => (hG' _ hH).1 , by
461- rintro a b ⟨H, hH, hab⟩
462- exact (hG' _ hH).2 hab⟩
463- sInf := sInf
464- sInf_le := fun _ G' hG' => ⟨Set.iInter₂_subset G' hG', fun _ _ hab => hab.1 hG'⟩
465- le_sInf := fun _ G' hG' =>
466- ⟨Set.subset_iInter₂ fun _ hH => (hG' _ hH).1 , fun _ _ hab =>
467- ⟨fun _ hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩
468- iInf_iSup_eq := fun f => Subgraph.ext (by simpa using iInf_iSup_eq)
469- (by ext; simp [Classical.skolem]) }
445+ def completelyDistribLatticeMinimalAxioms : CompletelyDistribLattice.MinimalAxioms G.Subgraph where
446+ le_top G' := ⟨Set.subset_univ _, fun _ _ => G'.adj_sub⟩
447+ bot_le _ := ⟨Set.empty_subset _, fun _ _ => False.elim⟩
448+ -- Porting note: needed `apply` here to modify elaboration; previously the term itself was fine.
449+ le_sSup s G' hG' := ⟨by apply Set.subset_iUnion₂ G' hG', fun _ _ hab => ⟨G', hG', hab⟩⟩
450+ sSup_le s G' hG' :=
451+ ⟨Set.iUnion₂_subset fun _ hH => (hG' _ hH).1 , by
452+ rintro a b ⟨H, hH, hab⟩
453+ exact (hG' _ hH).2 hab⟩
454+ sInf_le _ G' hG' := ⟨Set.iInter₂_subset G' hG', fun _ _ hab => hab.1 hG'⟩
455+ le_sInf _ G' hG' :=
456+ ⟨Set.subset_iInter₂ fun _ hH => (hG' _ hH).1 , fun _ _ hab =>
457+ ⟨fun _ hH => (hG' _ hH).2 hab, G'.adj_sub hab⟩⟩
458+ iInf_iSup_eq f := Subgraph.ext (by simpa using iInf_iSup_eq)
459+ (by ext; simp [Classical.skolem])
470460
471461instance : CompletelyDistribLattice G.Subgraph :=
472462 .ofMinimalAxioms completelyDistribLatticeMinimalAxioms
0 commit comments