Skip to content

Commit 0df4392

Browse files
feat: homOfEq lemmas (#24538)
* Add lemmas for the symmetry of `Quiver.homOfEq` * Add lemmas establishing `HEq` of `Quiver.homOfEq f ...` with the original morphism `f`
1 parent 3d2b6f8 commit 0df4392

File tree

1 file changed

+25
-0
lines changed

1 file changed

+25
-0
lines changed

Mathlib/Combinatorics/Quiver/Basic.lean

Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -111,6 +111,31 @@ lemma heq_of_homOfEq_ext {X Y X' Y' : V} (hX : X = X') (hY : Y = Y') {f : X ⟶
111111
rw [Quiver.homOfEq_rfl] at e
112112
rw [e]
113113

114+
lemma homOfEq_eq_iff {X X' Y Y' : V} (f : X ⟶ Y) (g : X' ⟶ Y')
115+
(hX : X = X') (hY : Y = Y') :
116+
Quiver.homOfEq f hX hY = g ↔ f = Quiver.homOfEq g hX.symm hY.symm := by
117+
subst hX hY; simp
118+
119+
lemma eq_homOfEq_iff {X X' Y Y' : V} (f : X ⟶ Y) (g : X' ⟶ Y')
120+
(hX : X' = X) (hY : Y' = Y) :
121+
f = Quiver.homOfEq g hX hY ↔ Quiver.homOfEq f hX.symm hY.symm = g := by
122+
subst hX hY; simp
123+
124+
lemma homOfEq_heq {X Y X' Y' : V} (hX : X = X') (hY : Y = Y') (f : X ⟶ Y) :
125+
HEq (homOfEq f hX hY) f := by
126+
cases hX; cases hY; rfl
127+
128+
lemma homOfEq_heq_left_iff {X Y X' Y' : V} (f : X ⟶ Y) (g : X' ⟶ Y')
129+
(hX : X = X') (hY : Y = Y') :
130+
HEq (homOfEq f hX hY) g ↔ HEq f g := by
131+
cases hX; cases hY; rfl
132+
133+
lemma homOfEq_heq_right_iff {X Y X' Y' : V} (f : X ⟶ Y) (g : X' ⟶ Y')
134+
(hX : X' = X) (hY : Y' = Y) :
135+
HEq f (homOfEq g hX hY) ↔ HEq f g := by
136+
cases hX; cases hY; rfl
137+
138+
114139
end
115140

116141
end Quiver

0 commit comments

Comments
 (0)