@@ -127,9 +127,16 @@ theorem OrdConnected.dual {s : Set α} (hs : OrdConnected s) :
127127    OrdConnected (OrderDual.ofDual ⁻¹' s) :=
128128  ⟨fun  _ hx _ hy _ hz => hs.out hy hx ⟨hz.2 , hz.1 ⟩⟩
129129
130+ @[instance] 
131+ theorem  dual_ordConnected  {s : Set α} [OrdConnected s] : OrdConnected (ofDual ⁻¹' s) :=
132+   .dual ‹OrdConnected s›
133+ 
134+ @[simp] 
130135theorem  ordConnected_dual  {s : Set α} : OrdConnected (OrderDual.ofDual ⁻¹' s) ↔ OrdConnected s :=
131136  ⟨fun  h => by  simpa only [ordConnected_def] using h.dual, fun  h => h.dual⟩
132137
138+ @[deprecated (since := "2025-10-28")]  alias dual_ordConnected_iff := ordConnected_dual
139+ 
133140theorem  ordConnected_sInter  {S : Set (Set α)} (hS : ∀ s ∈ S, OrdConnected s) :
134141    OrdConnected (⋂₀ S) :=
135142  ⟨fun  _x hx _y hy _z hz s hs => (hS s hs).out (hx s hs) (hy s hs) hz⟩
@@ -224,15 +231,6 @@ theorem ordConnected_range {E : Type*} [EquivLike E α β] [OrderIsoClass E α 
224231  simp_rw [← image_univ]
225232  exact ordConnected_image (e : α ≃o β)
226233
227- @[simp] 
228- theorem  dual_ordConnected_iff  {s : Set α} : OrdConnected (ofDual ⁻¹' s) ↔ OrdConnected s := by 
229-   simp_rw [ordConnected_def, toDual.surjective.forall, Icc_toDual, Subtype.forall']
230-   exact forall_swap
231- 
232- @[instance] 
233- theorem  dual_ordConnected  {s : Set α} [OrdConnected s] : OrdConnected (ofDual ⁻¹' s) :=
234-   dual_ordConnected_iff.2  ‹_›
235- 
236234/-- The preimage of an `OrdConnected` set under a map which is monotone on a set `t`, 
237235when intersected with `t`, is `OrdConnected`. More precisely, it is the intersection with `t` 
238236of an `OrdConnected` set. -/ 
0 commit comments