@@ -676,8 +676,8 @@ theorem condIndepFun_iff_condIndepSet_preimage {mβ : MeasurableSpace β} {mβ'
676676 simp only [CondIndepFun, CondIndepSet, Kernel.indepFun_iff_indepSet_preimage hf hg]
677677
678678@[symm]
679- nonrec theorem CondIndepFun.symm {_ : MeasurableSpace β} {f g : Ω → β }
680- (hfg : CondIndepFun m' hm' f g μ) :
679+ nonrec theorem CondIndepFun.symm {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β' }
680+ {f : Ω → β} {g : Ω → β'} (hfg : CondIndepFun m' hm' f g μ) :
681681 CondIndepFun m' hm' g f μ :=
682682 hfg.symm
683683
@@ -687,6 +687,16 @@ theorem CondIndepFun.comp {γ γ' : Type*} {_mβ : MeasurableSpace β} {_mβ' :
687687 CondIndepFun m' hm' (φ ∘ f) (ψ ∘ g) μ :=
688688 Kernel.IndepFun.comp hfg hφ hψ
689689
690+ lemma condIndepFun_const_left {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'}
691+ (c : β) (X : Ω → β') :
692+ CondIndepFun m' hm' (fun _ ↦ c) X μ :=
693+ Kernel.indepFun_const_left c X
694+
695+ lemma condIndepFun_const_right {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'}
696+ (X : Ω → β) (c : β') :
697+ CondIndepFun m' hm' X (fun _ ↦ c) μ :=
698+ Kernel.indepFun_const_right X c
699+
690700theorem CondIndepFun.neg_right {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} [Neg β']
691701 [MeasurableNeg β'] (hfg : CondIndepFun m' hm' f g μ) :
692702 CondIndepFun m' hm' f (-g) μ := hfg.comp measurable_id measurable_neg
@@ -695,6 +705,38 @@ theorem CondIndepFun.neg_left {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpa
695705 [MeasurableNeg β] (hfg : CondIndepFun m' hm' f g μ) :
696706 CondIndepFun m' hm' (-f) g μ := hfg.comp measurable_neg measurable_id
697707
708+ lemma condIndepFun_of_measurable_left {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'}
709+ {X : Ω → β} {Y : Ω → β'} (hX : Measurable[m'] X) (hY : Measurable Y) :
710+ CondIndepFun m' hm' X Y μ := by
711+ rw [condIndepFun_iff _ hm' _ _ (hX.mono hm' le_rfl) hY]
712+ rintro _ _ ⟨s, hs, rfl⟩ ⟨t, ht, rfl⟩
713+ rw [show (fun ω : Ω ↦ (1 : ℝ)) = 1 from rfl, Set.inter_indicator_one]
714+ calc μ[(X ⁻¹' s).indicator 1 * (Y ⁻¹' t).indicator 1 |m']
715+ _ =ᵐ[μ] (X ⁻¹' s).indicator 1 * μ[(Y ⁻¹' t).indicator 1 |m'] := by
716+ refine condExp_stronglyMeasurable_mul_of_bound hm' (stronglyMeasurable_const.indicator (hX hs))
717+ ((integrable_indicator_iff (hY ht)).2 integrableOn_const) 1 (ae_of_all μ fun ω ↦ ?_)
718+ rw [Set.indicator]
719+ split_ifs with h <;> simp
720+ _ =ᵐ[μ] μ[(X ⁻¹' s).indicator 1 |m'] * μ[(Y ⁻¹' t).indicator 1 |m'] := by
721+ nth_rw 2 [condExp_of_stronglyMeasurable hm']
722+ · exact stronglyMeasurable_const.indicator (hX hs)
723+ · exact (integrable_indicator_iff ((hX.le hm') hs)).2 integrableOn_const
724+
725+ lemma condIndepFun_of_measurable_right {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'}
726+ {X : Ω → β} {Y : Ω → β'} (hX : Measurable X) (hY : Measurable[m'] Y) :
727+ CondIndepFun m' hm' X Y μ :=
728+ (condIndepFun_of_measurable_left hY hX).symm
729+
730+ lemma condIndepFun_self_left {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'}
731+ {X : Ω → β} {Z : Ω → β'} (hX : Measurable X) (hZ : Measurable Z) :
732+ CondIndepFun (mβ'.comap Z) hZ.comap_le Z X μ :=
733+ condIndepFun_of_measurable_left (comap_measurable Z) hX
734+
735+ lemma condIndepFun_self_right {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'}
736+ {X : Ω → β} {Z : Ω → β'} (hX : Measurable X) (hZ : Measurable Z) :
737+ CondIndepFun (mβ'.comap Z) hZ.comap_le X Z μ :=
738+ condIndepFun_of_measurable_right hX (comap_measurable Z)
739+
698740section iCondIndepFun
699741variable {β : ι → Type *} {m : ∀ i, MeasurableSpace (β i)} {f : ∀ i, Ω → β i}
700742
0 commit comments