@@ -226,6 +226,11 @@ theorem measure_biUnion_lt_top {s : Set β} {f : β → Set α} (hs : s.Finite)
226226 rw [Finite.mem_toFinset]
227227 · simpa only [ENNReal.sum_lt_top, Finite.mem_toFinset]
228228
229+ @[aesop (rule_sets := [finiteness] ) safe apply]
230+ theorem measure_biUnion_ne_top {s : Set β} {f : β → Set α} (hs : s.Finite)
231+ (hfin : ∀ i ∈ s, μ (f i) ≠ ∞) : μ (⋃ i ∈ s, f i) ≠ ∞ :=
232+ (measure_biUnion_lt_top hs (fun i hi ↦ Ne.lt_top (hfin i hi ·))).ne
233+
229234theorem measure_union_lt_top (hs : μ s < ∞) (ht : μ t < ∞) : μ (s ∪ t) < ∞ :=
230235 (measure_union_le s t).trans_lt (ENNReal.add_lt_top.mpr ⟨hs, ht⟩)
231236
@@ -235,12 +240,14 @@ theorem measure_union_lt_top_iff : μ (s ∪ t) < ∞ ↔ μ s < ∞ ∧ μ t <
235240 · exact (measure_mono Set.subset_union_left).trans_lt h
236241 · exact (measure_mono Set.subset_union_right).trans_lt h
237242
243+ @[aesop (rule_sets := [finiteness] ) safe apply]
238244theorem measure_union_ne_top (hs : μ s ≠ ∞) (ht : μ t ≠ ∞) : μ (s ∪ t) ≠ ∞ :=
239245 (measure_union_lt_top hs.lt_top ht.lt_top).ne
240246
241247open scoped symmDiff in
248+ @[aesop (rule_sets := [finiteness] ) unsafe 95 % apply]
242249theorem measure_symmDiff_ne_top (hs : μ s ≠ ∞) (ht : μ t ≠ ∞) : μ (s ∆ t) ≠ ∞ :=
243- ne_top_of_le_ne_top (measure_union_ne_top hs ht ) <| measure_mono symmDiff_subset_union
250+ ne_top_of_le_ne_top (by finiteness ) <| measure_mono symmDiff_subset_union
244251
245252@[simp]
246253theorem measure_union_eq_top_iff : μ (s ∪ t) = ∞ ↔ μ s = ∞ ∨ μ t = ∞ :=
@@ -257,11 +264,19 @@ theorem measure_lt_top_of_subset (hst : t ⊆ s) (hs : μ s ≠ ∞) : μ t <
257264theorem measure_ne_top_of_subset (h : t ⊆ s) (ht : μ s ≠ ∞) : μ t ≠ ∞ :=
258265 (measure_lt_top_of_subset h ht).ne
259266
260- theorem measure_inter_lt_top_of_left_ne_top (hs_finite : μ s ≠ ∞) : μ (s ∩ t) < ∞ :=
261- measure_lt_top_of_subset inter_subset_left hs_finite
267+ @[aesop (rule_sets := [finiteness] ) unsafe apply]
268+ theorem measure_inter_ne_top_of_left_ne_top (hs_finite : μ s ≠ ∞) : μ (s ∩ t) ≠ ∞ :=
269+ measure_ne_top_of_subset inter_subset_left hs_finite
270+
271+ theorem measure_inter_lt_top_of_left_ne_top (hs_finite : μ s ≠ ∞) : μ (s ∩ t) < ∞ := by
272+ finiteness
273+
274+ @[aesop (rule_sets := [finiteness] ) unsafe apply]
275+ theorem measure_inter_ne_top_of_right_ne_top (ht_finite : μ t ≠ ∞) : μ (s ∩ t) ≠ ∞ :=
276+ measure_ne_top_of_subset inter_subset_right ht_finite
262277
263- theorem measure_inter_lt_top_of_right_ne_top (ht_finite : μ t ≠ ∞) : μ (s ∩ t) < ∞ :=
264- measure_lt_top_of_subset inter_subset_right ht_finite
278+ theorem measure_inter_lt_top_of_right_ne_top (ht_finite : μ t ≠ ∞) : μ (s ∩ t) < ∞ := by
279+ finiteness
265280
266281theorem measure_inter_null_of_null_right (S : Set α) {T : Set α} (h : μ T = 0 ) : μ (S ∩ T) = 0 :=
267282 measure_mono_null inter_subset_right h
0 commit comments