@@ -275,7 +275,7 @@ instance : SetLike (NonemptyCompacts α) α where
275275/-- See Note [custom simps projection]. -/
276276def Simps.coe (s : NonemptyCompacts α) : Set α := s
277277
278- initialize_simps_projections NonemptyCompacts (carrier → coe, as_prefix coe)
278+ initialize_simps_projections NonemptyCompacts (carrier → coe, as_prefix coe, as_prefix toCompacts )
279279
280280protected theorem isCompact (s : NonemptyCompacts α) : IsCompact (s : Set α) :=
281281 s.isCompact'
@@ -343,18 +343,14 @@ theorem coe_sup (s t : NonemptyCompacts α) : (↑(s ⊔ t) : Set α) = ↑s ∪
343343theorem coe_top [CompactSpace α] [Nonempty α] : (↑(⊤ : NonemptyCompacts α) : Set α) = univ :=
344344 rfl
345345
346- @[simps!]
346+ @[simps! singleton_coe singleton_toCompacts ]
347347instance : Singleton α (NonemptyCompacts α) where
348348 singleton x := ⟨{x}, singleton_nonempty x⟩
349349
350350@[simp]
351351theorem mem_singleton (x y : α) : x ∈ ({y} : NonemptyCompacts α) ↔ x = y :=
352352 Iff.rfl
353353
354- @[simp]
355- theorem toCompacts_singleton (x : α) : toCompacts {x} = {x} :=
356- rfl
357-
358354@[simp]
359355theorem toCloseds_singleton [T2Space α] (x : α) : toCloseds {x} = Closeds.singleton x :=
360356 rfl
@@ -488,7 +484,7 @@ instance : SetLike (PositiveCompacts α) α where
488484/-- See Note [custom simps projection]. -/
489485def Simps.coe (s : PositiveCompacts α) : Set α := s
490486
491- initialize_simps_projections PositiveCompacts (carrier → coe, as_prefix coe)
487+ initialize_simps_projections PositiveCompacts (carrier → coe, as_prefix coe, as_prefix toCompacts )
492488
493489protected theorem isCompact (s : PositiveCompacts α) : IsCompact (s : Set α) :=
494490 s.isCompact'
@@ -623,7 +619,7 @@ instance : SetLike (CompactOpens α) α where
623619/-- See Note [custom simps projection]. -/
624620def Simps.coe (s : CompactOpens α) : Set α := s
625621
626- initialize_simps_projections CompactOpens (carrier → coe, as_prefix coe)
622+ initialize_simps_projections CompactOpens (carrier → coe, as_prefix coe, as_prefix toCompacts )
627623
628624protected theorem isCompact (s : CompactOpens α) : IsCompact (s : Set α) :=
629625 s.isCompact'
@@ -730,6 +726,8 @@ end Top.Compl
730726def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) : CompactOpens β :=
731727 ⟨s.toCompacts.map f hf, hf' _ s.isOpen⟩
732728
729+ @[deprecated (since := "2025-11-13")] alias map_toCompacts := toCompacts_map
730+
733731@[simp, norm_cast]
734732theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
735733 (s.map f hf hf' : Set β) = f '' s :=
0 commit comments