Skip to content

Commit 2536bec

Browse files
committed
chore: rename foo_of_norm_one to foo_of_norm_eq_one (#31674)
These should be called `foo_of_norm_eq_one` and not `foo_of_norm_one`. We already have two lemmas that are correctly named this way: [NormedSpace.normalize_eq_self_of_norm_eq_one](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/NormedSpace/Normalize.html#NormedSpace.normalize_eq_self_of_norm_eq_one) and [NumberField.Embeddings.pow_eq_one_of_norm_eq_one](https://leanprover-community.github.io/mathlib4_docs/Mathlib/NumberTheory/NumberField/InfinitePlace/Embeddings.html#NumberField.Embeddings.pow_eq_one_of_norm_eq_one).
1 parent ae0080b commit 2536bec

File tree

7 files changed

+34
-18
lines changed

7 files changed

+34
-18
lines changed

Mathlib/Analysis/CStarAlgebra/Unitary/Connected.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ lemma Unitary.two_mul_one_sub_le_norm_sub_one_sq {u : A} (hu : u ∈ unitary A)
6464
simp only [mem_sphere_iff_norm, sub_zero] at this
6565
rw [← cfc_id' ℂ u, ← cfc_one ℂ u, ← cfc_sub ..]
6666
convert norm_apply_le_norm_cfc (fun z ↦ z - 1) u hz
67-
simpa using congr(Real.sqrt $(norm_sub_one_sq_eq_of_norm_one this)).symm
67+
simpa using congr(Real.sqrt $(norm_sub_one_sq_eq_of_norm_eq_one this)).symm
6868

6969
@[deprecated (since := "2025-10-29")] alias unitary.two_mul_one_sub_le_norm_sub_one_sq :=
7070
Unitary.two_mul_one_sub_le_norm_sub_one_sq

Mathlib/Analysis/Complex/Norm.lean

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -354,7 +354,7 @@ lemma re_neg_ne_zero_of_re_pos {s : ℂ} (hs : 0 < s.re) : (-s).re ≠ 0 :=
354354
lemma re_neg_ne_zero_of_one_lt_re {s : ℂ} (hs : 1 < s.re) : (-s).re ≠ 0 :=
355355
re_neg_ne_zero_of_re_pos <| zero_lt_one.trans hs
356356

357-
lemma norm_sub_one_sq_eq_of_norm_one {z : ℂ} (hz : ‖z‖ = 1) :
357+
lemma norm_sub_one_sq_eq_of_norm_eq_one {z : ℂ} (hz : ‖z‖ = 1) :
358358
‖z - 1‖ ^ 2 = 2 * (1 - z.re) := by
359359
have : z.im * z.im = 1 - z.re * z.re := by
360360
replace hz := sq_eq_one_iff.mpr (.inl hz)
@@ -363,9 +363,12 @@ lemma norm_sub_one_sq_eq_of_norm_one {z : ℂ} (hz : ‖z‖ = 1) :
363363
simp [Complex.sq_norm, normSq_apply, this]
364364
ring
365365

366+
@[deprecated (since := "2025-11-15")] alias norm_sub_one_sq_eq_of_norm_one :=
367+
norm_sub_one_sq_eq_of_norm_eq_one
368+
366369
lemma norm_sub_one_sq_eqOn_sphere :
367370
(Metric.sphere (0 : ℂ) 1).EqOn (‖· - 1‖ ^ 2) (fun z ↦ 2 * (1 - z.re)) :=
368-
fun z hz ↦ norm_sub_one_sq_eq_of_norm_one (by simpa using hz)
371+
fun z hz ↦ norm_sub_one_sq_eq_of_norm_eq_one (by simpa using hz)
369372

370373
lemma normSq_ofReal_add_I_mul_sqrt_one_sub {x : ℝ} (hx : ‖x‖ ≤ 1) :
371374
normSq (x + I * √(1 - x ^ 2)) = 1 := by

Mathlib/Analysis/InnerProductSpace/Basic.lean

Lines changed: 11 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -789,12 +789,12 @@ theorem real_inner_div_norm_mul_norm_eq_neg_one_iff (x y : F) :
789789

790790
/-- If the inner product of two unit vectors is `1`, then the two vectors are equal. One form of
791791
the equality case for Cauchy-Schwarz. -/
792-
theorem inner_eq_one_iff_of_norm_one {x y : E} (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) :
792+
theorem inner_eq_one_iff_of_norm_eq_one {x y : E} (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) :
793793
⟪x, y⟫ = 1 ↔ x = y := by
794794
convert inner_eq_norm_mul_iff (𝕜 := 𝕜) (E := E) using 2 <;> simp [hx, hy]
795795

796-
theorem inner_self_eq_one_of_norm_one {x : E} (hx : ‖x‖ = 1) : ⟪x, x⟫_𝕜 = 1 :=
797-
(inner_eq_one_iff_of_norm_one hx hx).mpr rfl
796+
theorem inner_self_eq_one_of_norm_eq_one {x : E} (hx : ‖x‖ = 1) : ⟪x, x⟫_𝕜 = 1 :=
797+
(inner_eq_one_iff_of_norm_eq_one hx hx).mpr rfl
798798

799799
theorem inner_lt_norm_mul_iff_real {x y : F} : ⟪x, y⟫_ℝ < ‖x‖ * ‖y‖ ↔ ‖y‖ • x ≠ ‖x‖ • y :=
800800
calc
@@ -804,9 +804,16 @@ theorem inner_lt_norm_mul_iff_real {x y : F} : ⟪x, y⟫_ℝ < ‖x‖ * ‖y
804804

805805
/-- If the inner product of two unit vectors is strictly less than `1`, then the two vectors are
806806
distinct. One form of the equality case for Cauchy-Schwarz. -/
807-
theorem inner_lt_one_iff_real_of_norm_one {x y : F} (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) :
807+
theorem inner_lt_one_iff_real_of_norm_eq_one {x y : F} (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) :
808808
⟪x, y⟫_ℝ < 1 ↔ x ≠ y := by convert inner_lt_norm_mul_iff_real (F := F) <;> simp [hx, hy]
809809

810+
@[deprecated (since := "2025-11-15")] alias inner_eq_one_iff_of_norm_one :=
811+
inner_eq_one_iff_of_norm_eq_one
812+
@[deprecated (since := "2025-11-15")] alias inner_self_eq_one_of_norm_one :=
813+
inner_self_eq_one_of_norm_eq_one
814+
@[deprecated (since := "2025-11-15")] alias inner_lt_one_iff_real_of_norm_one :=
815+
inner_lt_one_iff_real_of_norm_eq_one
816+
810817
/-- The sphere of radius `r = ‖y‖` is tangent to the plane `⟪x, y⟫ = ‖y‖ ^ 2` at `x = y`. -/
811818
theorem eq_of_norm_le_re_inner_eq_norm_sq {x y : E} (hle : ‖x‖ ≤ ‖y‖) (h : re ⟪x, y⟫ = ‖y‖ ^ 2) :
812819
x = y := by

Mathlib/Analysis/LocallyConvex/WithSeminorms.lean

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -771,11 +771,13 @@ variable [NontriviallyNormedField 𝕜] [AddCommGroup E] [Module 𝕜 E]
771771
{p : SeminormFamily 𝕜 E ι}
772772

773773
/-- In a semi-`NormedSpace`, a continuous seminorm is zero on elements of norm `0`. -/
774-
lemma map_eq_zero_of_norm_zero (q : Seminorm 𝕜 F)
774+
lemma map_eq_zero_of_norm_eq_zero (q : Seminorm 𝕜 F)
775775
(hq : Continuous q) {x : F} (hx : ‖x‖ = 0) : q x = 0 :=
776776
(map_zero q) ▸
777777
((specializes_iff_mem_closure.mpr <| mem_closure_zero_iff_norm.mpr hx).map hq).eq.symm
778778

779+
@[deprecated (since := "2025-11-15")] alias map_eq_zero_of_norm_zero := map_eq_zero_of_norm_eq_zero
780+
779781
/-- Let `F` be a semi-`NormedSpace` over a `NontriviallyNormedField`, and let `q` be a
780782
seminorm on `F`. If `q` is continuous, then it is uniformly controlled by the norm, that is there
781783
is some `C > 0` such that `∀ x, q x ≤ C * ‖x‖`.
@@ -792,7 +794,7 @@ lemma bound_of_continuous_normedSpace (q : Seminorm 𝕜 F)
792794
refine ⟨‖c‖ / ε, this, fun x ↦ ?_⟩
793795
by_cases hx : ‖x‖ = 0
794796
· rw [hx, mul_zero]
795-
exact le_of_eq (map_eq_zero_of_norm_zero q hq hx)
797+
exact le_of_eq (map_eq_zero_of_norm_eq_zero q hq hx)
796798
· refine (normSeminorm 𝕜 F).bound_of_shell q ε_pos hc (fun x hle hlt ↦ ?_) hx
797799
refine (le_of_lt <| show q x < _ from hε hlt).trans ?_
798800
rwa [← div_le_iff₀' this, one_div_div]

Mathlib/Analysis/Normed/Operator/Basic.lean

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -87,11 +87,13 @@ theorem sphere_subset_range_iff_surjective [RingHomSurjective τ] {f : 𝓕'} {x
8787
end
8888

8989
/-- If `‖x‖ = 0` and `f` is continuous then `‖f x‖ = 0`. -/
90-
theorem norm_image_of_norm_zero [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) (hf : Continuous f) {x : E}
91-
(hx : ‖x‖ = 0) : ‖f x‖ = 0 := by
90+
theorem norm_image_of_norm_eq_zero [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) (hf : Continuous f)
91+
{x : E} (hx : ‖x‖ = 0) : ‖f x‖ = 0 := by
9292
rw [← mem_closure_zero_iff_norm, ← specializes_iff_mem_closure, ← map_zero f] at *
9393
exact hx.map hf
9494

95+
@[deprecated (since := "2025-11-15")] alias norm_image_of_norm_zero := norm_image_of_norm_eq_zero
96+
9597
section
9698

9799
variable [RingHomIsometric σ₁₂]
@@ -203,7 +205,7 @@ theorem opNorm_le_bound' (f : E →SL[σ₁₂] F) {M : ℝ} (hMp : 0 ≤ M)
203205
(hM : ∀ x, ‖x‖ ≠ 0 → ‖f x‖ ≤ M * ‖x‖) : ‖f‖ ≤ M :=
204206
opNorm_le_bound f hMp fun x =>
205207
(ne_or_eq ‖x‖ 0).elim (hM x) fun h => by
206-
simp only [h, mul_zero, norm_image_of_norm_zero f f.2 h, le_refl]
208+
simp only [h, mul_zero, norm_image_of_norm_eq_zero f f.2 h, le_refl]
207209

208210

209211
theorem opNorm_eq_of_bounds {φ : E →SL[σ₁₂] F} {M : ℝ} (M_nonneg : 0 ≤ M)

Mathlib/Geometry/Manifold/Instances/Sphere.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -181,7 +181,7 @@ open scoped InnerProductSpace in
181181
theorem stereoInvFun_ne_north_pole (hv : ‖v‖ = 1) (w : (ℝ ∙ v)ᗮ) :
182182
stereoInvFun hv w ≠ (⟨v, by simp [hv]⟩ : sphere (0 : E) 1) := by
183183
refine Subtype.coe_ne_coe.1 ?_
184-
rw [← inner_lt_one_iff_real_of_norm_one _ hv]
184+
rw [← inner_lt_one_iff_real_of_norm_eq_one _ hv]
185185
· have hw : ⟪v, w⟫_ℝ = 0 := Submodule.mem_orthogonal_singleton_iff_inner_right.mp w.2
186186
have hw' : (‖(w : E)‖ ^ 2 + 4)⁻¹ * (‖(w : E)‖ ^ 2 - 4) < 1 := by
187187
rw [inv_mul_lt_iff₀']
@@ -217,7 +217,7 @@ theorem stereo_left_inv (hv : ‖v‖ = 1) {x : sphere (0 : E) 1} (hx : (x : E)
217217
· exact sq _
218218
-- a fact which will be helpful for clearing denominators in the main calculation
219219
have ha : 0 < 1 - a := by
220-
have : a < 1 := (inner_lt_one_iff_real_of_norm_one hv (by simp)).mpr hx.symm
220+
have : a < 1 := (inner_lt_one_iff_real_of_norm_eq_one hv (by simp)).mpr hx.symm
221221
linarith
222222
rw [split, Submodule.coe_smul_of_tower]
223223
simp only [norm_smul, norm_div, RCLike.norm_ofNat, Real.norm_eq_abs, abs_of_nonneg ha.le]
@@ -260,7 +260,7 @@ def stereographic (hv : ‖v‖ = 1) : OpenPartialHomeomorph (sphere (0 : E) 1)
260260
continuousOn_stereoToFun.comp continuous_subtype_val.continuousOn fun w h => by
261261
dsimp
262262
exact
263-
h ∘ Subtype.ext ∘ Eq.symm ∘ (inner_eq_one_iff_of_norm_one hv (by simp)).mp
263+
h ∘ Subtype.ext ∘ Eq.symm ∘ (inner_eq_one_iff_of_norm_eq_one hv (by simp)).mp
264264
continuousOn_invFun := (continuous_stereoInvFun hv).continuousOn
265265

266266
theorem stereographic_apply (hv : ‖v‖ = 1) (x : sphere (0 : E) 1) :
@@ -364,7 +364,7 @@ section ContMDiffManifold
364364
open scoped InnerProductSpace
365365

366366
theorem sphere_ext_iff (u v : sphere (0 : E) 1) : u = v ↔ ⟪(u : E), v⟫_ℝ = 1 := by
367-
simp [Subtype.ext_iff, inner_eq_one_iff_of_norm_one]
367+
simp [Subtype.ext_iff, inner_eq_one_iff_of_norm_eq_one]
368368

369369
theorem stereographic'_symm_apply {n : ℕ} [Fact (finrank ℝ E = n + 1)] (v : sphere (0 : E) 1)
370370
(x : EuclideanSpace ℝ (Fin n)) :
@@ -450,7 +450,7 @@ theorem ContMDiff.codRestrict_sphere {n : ℕ} [Fact (finrank ℝ E = n + 1)] {f
450450
ext x
451451
have hfxv : f x = -↑v ↔ ⟪f x, -↑v⟫_ℝ = 1 := by
452452
have hfx : ‖f x‖ = 1 := by simpa using hf' x
453-
rw [inner_eq_one_iff_of_norm_one hfx]
453+
rw [inner_eq_one_iff_of_norm_eq_one hfx]
454454
exact norm_eq_of_mem_sphere (-v)
455455
simp [chartAt, ChartedSpace.chartAt, Subtype.ext_iff, hfxv, real_inner_comm]
456456

Mathlib/NumberTheory/NumberField/CanonicalEmbedding/FundamentalCone.lean

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -121,11 +121,13 @@ theorem logMap_mul (hx : mixedEmbedding.norm x ≠ 0) (hy : mixedEmbedding.norm
121121
· exact mixedEmbedding.norm_ne_zero_iff.mp hx w
122122
· exact mixedEmbedding.norm_ne_zero_iff.mp hy w
123123

124-
theorem logMap_apply_of_norm_one (hx : mixedEmbedding.norm x = 1)
124+
theorem logMap_apply_of_norm_eq_one (hx : mixedEmbedding.norm x = 1)
125125
(w : {w : InfinitePlace K // w ≠ w₀}) :
126126
logMap x w = mult w.val * Real.log (normAtPlace w x) := by
127127
rw [logMap_apply, hx, Real.log_one, zero_mul, sub_zero]
128128

129+
@[deprecated (since := "2025-11-15")] alias logMap_apply_of_norm_one := logMap_apply_of_norm_eq_one
130+
129131
@[simp]
130132
theorem logMap_eq_logEmbedding (u : (𝓞 K)ˣ) :
131133
logMap (mixedEmbedding K u) = logEmbedding K (Additive.ofMul u) := by

0 commit comments

Comments
 (0)