@@ -5,7 +5,9 @@ Authors: Johannes Hölzl
55-/
66import Mathlib.Algebra.BigOperators.NatAntidiagonal
77import Mathlib.Algebra.BigOperators.Ring.Finset
8+ import Mathlib.Algebra.Ring.GeomSum
89import Mathlib.Topology.Algebra.InfiniteSum.Constructions
10+ import Mathlib.Topology.Algebra.InfiniteSum.NatInt
911import Mathlib.Topology.Algebra.GroupWithZero
1012import Mathlib.Topology.Algebra.Ring.Basic
1113
@@ -17,6 +19,7 @@ This file provides lemmas about the interaction between infinite sums and multip
1719## Main results
1820
1921* `tsum_mul_tsum_eq_tsum_sum_antidiagonal`: Cauchy product formula
22+ * `Summable.tsum_pow_mul_one_sub`, `Summable.one_sub_mul_tsum_pow`: geometric series formula.
2023* `tprod_one_add`: expanding `∏' i : ι, (1 + f i)` as infinite sum.
2124 -/
2225
@@ -249,6 +252,29 @@ end Nat
249252
250253end CauchyProduct
251254
255+ section GeomSeries
256+
257+ /-!
258+ ### Geometric series `∑' n : ℕ, x ^ n`
259+
260+ This section gives a general result about geometric series without assuming additional structure on
261+ the topological ring. For normed ring, see also `geom_series_mul_neg` and friends.
262+ -/
263+
264+ variable [Ring α] [TopologicalSpace α] [IsTopologicalRing α] [T2Space α]
265+
266+ theorem Summable.tsum_pow_mul_one_sub {x : α} (h : Summable (x ^ ·)) :
267+ (∑' (i : ℕ), x ^ i) * (1 - x) = 1 := by
268+ refine tendsto_nhds_unique (h.hasSum.mul_right (1 - x)).tendsto_sum_nat ?_
269+ simpa [← Finset.sum_mul, geom_sum_mul_neg] using tendsto_const_nhds.sub h.tendsto_atTop_zero
270+
271+ theorem Summable.one_sub_mul_tsum_pow {x : α} (h : Summable (x ^ ·)) :
272+ (1 - x) * ∑' (i : ℕ), x ^ i = 1 := by
273+ refine tendsto_nhds_unique (h.hasSum.mul_left (1 - x)).tendsto_sum_nat ?_
274+ simpa [← Finset.mul_sum, mul_neg_geom_sum] using tendsto_const_nhds.sub h.tendsto_atTop_zero
275+
276+ end GeomSeries
277+
252278section ProdOneSum
253279
254280/-!
0 commit comments