Skip to content

Commit 28ac543

Browse files
committed
feat(Algebra/Category): simp lemmas for Iso.toLinearEquiv (#31189)
From ClassFieldTheory Co-authored-by: Edison Xie
1 parent 2250b7a commit 28ac543

File tree

1 file changed

+7
-2
lines changed

1 file changed

+7
-2
lines changed

Mathlib/Algebra/Category/ModuleCat/Basic.lean

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -274,10 +274,15 @@ def LinearEquiv.toModuleIso {g₁ : AddCommGroup X₁} {g₂ : AddCommGroup X₂
274274
inv_hom_id := by ext; apply e.right_inv
275275

276276
namespace CategoryTheory.Iso
277+
variable {X Y : ModuleCat R}
277278

278279
/-- Build a `LinearEquiv` from an isomorphism in the category `ModuleCat R`. -/
279-
def toLinearEquiv {X Y : ModuleCat R} (i : X ≅ Y) : X ≃ₗ[R] Y :=
280-
LinearEquiv.ofLinear i.hom.hom i.inv.hom (by aesop) (by aesop)
280+
def toLinearEquiv (i : X ≅ Y) : X ≃ₗ[R] Y :=
281+
.ofLinear i.hom.hom i.inv.hom (by aesop) (by aesop)
282+
283+
@[simp] lemma toLinearEquiv_apply (i : X ≅ Y) (x : X) : i.toLinearEquiv x = i.hom x := rfl
284+
@[simp] lemma toLinearEquiv_symm (i : X ≅ Y) : i.toLinearEquiv.symm = i.symm.toLinearEquiv := rfl
285+
@[simp] lemma toLinearMap_toLinearEquiv (i : X ≅ Y) : i.toLinearEquiv = i.hom.hom := rfl
281286

282287
end CategoryTheory.Iso
283288

0 commit comments

Comments
 (0)