@@ -272,16 +272,10 @@ alias LinearIndependent.linearCombination_ne_of_not_mem_support :=
272272
273273end Subtype
274274
275- section union
276-
277- open LinearMap Finsupp
278-
279275theorem LinearIndepOn.id_imageₛ {s : Set M} {f : M →ₗ[R] M'} (hs : LinearIndepOn R id s)
280276 (hf_inj : Set.InjOn f (span R s)) : LinearIndepOn R id (f '' s) :=
281277 id_image <| hs.map_injOn f (by simpa using hf_inj)
282278
283- end union
284-
285279theorem surjective_of_linearIndependent_of_span [Nontrivial R] (hv : LinearIndependent R v)
286280 (f : ι' ↪ ι) (hss : range v ⊆ span R (range (v ∘ f))) : Surjective f := by
287281 intro i
@@ -559,30 +553,21 @@ theorem linearIndependent_monoidHom (G : Type*) [MulOneClass G] (L : Type*) [Com
559553end Module
560554
561555section Nontrivial
556+ variable [Ring R] [AddCommGroup M] [Module R M] [Nontrivial R] [NoZeroSMulDivisors R M]
557+ {v : ι → M} {i : ι}
562558
563- variable [Ring R] [Nontrivial R] [AddCommGroup M]
564- variable [Module R M] [NoZeroSMulDivisors R M]
565- variable {s t : Set M}
566-
567- theorem linearIndependent_unique_iff (v : ι → M) [Unique ι] :
568- LinearIndependent R v ↔ v default ≠ 0 := by
569- simp only [linearIndependent_iff, Finsupp.linearCombination_unique, smul_eq_zero]
570- refine ⟨fun h hv => ?_, fun hv l hl => Finsupp.unique_ext <| hl.resolve_right hv⟩
571- have := h (Finsupp.single default 1 ) (Or.inr hv)
572- exact one_ne_zero (Finsupp.single_eq_zero.1 this)
559+ lemma linearIndependent_unique_iff [Unique ι] : LinearIndependent R v ↔ v default ≠ 0 := by
560+ refine ⟨?_, .of_subsingleton _⟩
561+ simpa [linearIndependent_iff, Finsupp.linearCombination_unique, Finsupp.ext_iff,
562+ Unique.forall_iff, or_imp] using fun h hv ↦ by simpa using h (.single default 1 ) hv
573563
564+ @[deprecated LinearIndependent.of_subsingleton (since := "2025-11-11")]
574565alias ⟨_, linearIndependent_unique⟩ := linearIndependent_unique_iff
575566
576567variable (R) in
577568@[simp]
578- theorem linearIndepOn_singleton_iff {i : ι} {v : ι → M} : LinearIndepOn R v {i} ↔ v i ≠ 0 :=
579- ⟨fun h ↦ h.ne_zero rfl, fun h ↦ linearIndependent_unique _ h⟩
580-
581- alias ⟨_, LinearIndepOn.singleton⟩ := linearIndepOn_singleton_iff
582-
583- variable (R) in
584- theorem LinearIndepOn.id_singleton {x : M} (hx : x ≠ 0 ) : LinearIndepOn R id {x} :=
585- linearIndependent_unique Subtype.val hx
569+ theorem linearIndepOn_singleton_iff : LinearIndepOn R v {i} ↔ v i ≠ 0 :=
570+ ⟨fun h ↦ h.ne_zero rfl, .singleton⟩
586571
587572@[simp]
588573theorem linearIndependent_subsingleton_index_iff [Subsingleton ι] (f : ι → M) :
0 commit comments