Skip to content

Commit 2fb8b41

Browse files
committed
chore(TangentCone): split uniqueDiffWithinAt_convex (#30376)
I need the new lemma for #24019
1 parent 723f276 commit 2fb8b41

File tree

1 file changed

+10
-7
lines changed

1 file changed

+10
-7
lines changed

Mathlib/Analysis/Calculus/TangentCone.lean

Lines changed: 10 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -591,22 +591,25 @@ end Normed
591591
section RealNormed
592592
variable [NormedAddCommGroup G] [NormedSpace ℝ G]
593593

594-
/-- In a real vector space, a convex set with nonempty interior is a set of unique
595-
differentiability at every point of its closure. -/
596-
theorem uniqueDiffWithinAt_convex {s : Set G} (conv : Convex ℝ s) (hs : (interior s).Nonempty)
597-
{x : G} (hx : x ∈ closure s) : UniqueDiffWithinAt ℝ s x := by
594+
theorem Convex.span_tangentConeAt {s : Set G} (conv : Convex ℝ s) (hs : (interior s).Nonempty)
595+
{x : G} (hx : x ∈ closure s) : Submodule.span ℝ (tangentConeAt ℝ s x) = ⊤ := by
598596
rcases hs with ⟨y, hy⟩
599597
suffices y - x ∈ interior (tangentConeAt ℝ s x) by
600-
refine ⟨Dense.of_closure ?_, hx⟩
601-
simp [(Submodule.span ℝ (tangentConeAt ℝ s x)).eq_top_of_nonempty_interior'
602-
⟨y - x, interior_mono Submodule.subset_span this⟩]
598+
apply (Submodule.span ℝ (tangentConeAt ℝ s x)).eq_top_of_nonempty_interior'
599+
exact ⟨y - x, interior_mono Submodule.subset_span this⟩
603600
rw [mem_interior_iff_mem_nhds]
604601
replace hy : interior s ∈ 𝓝 y := IsOpen.mem_nhds isOpen_interior hy
605602
apply mem_of_superset ((isOpenMap_sub_right x).image_mem_nhds hy)
606603
rintro _ ⟨z, zs, rfl⟩
607604
refine mem_tangentConeAt_of_openSegment_subset (Subset.trans ?_ interior_subset)
608605
exact conv.openSegment_closure_interior_subset_interior hx zs
609606

607+
/-- In a real vector space, a convex set with nonempty interior is a set of unique
608+
differentiability at every point of its closure. -/
609+
theorem uniqueDiffWithinAt_convex {s : Set G} (conv : Convex ℝ s) (hs : (interior s).Nonempty)
610+
{x : G} (hx : x ∈ closure s) : UniqueDiffWithinAt ℝ s x := by
611+
simp [uniqueDiffWithinAt_iff, conv.span_tangentConeAt hs hx, hx]
612+
610613
/-- In a real vector space, a convex set with nonempty interior is a set of unique
611614
differentiability. -/
612615
theorem uniqueDiffOn_convex {s : Set G} (conv : Convex ℝ s) (hs : (interior s).Nonempty) :

0 commit comments

Comments
 (0)