@@ -812,7 +812,7 @@ protected def _root_.LinearIsometryEquiv.piLpCongrRight (e : ∀ i, α i ≃ₗ
812812 ≪≫ₗ (LinearEquiv.piCongrRight fun i => (e i).toLinearEquiv)
813813 ≪≫ₗ (WithLp.linearEquiv _ _ _).symm
814814 norm_map' := (WithLp.linearEquiv p 𝕜 _).symm.surjective.forall.2 fun x => by
815- simp only [LinearEquiv.trans_apply, WithLp.linearEquiv_symm_apply, WithLp.linearEquiv_apply ]
815+ simp only [coe_symm_linearEquiv, LinearEquiv.trans_apply, coe_linearEquiv ]
816816 obtain rfl | hp := p.dichotomy
817817 · simp_rw [PiLp.norm_toLp, Pi.norm_def, LinearEquiv.piCongrRight_apply,
818818 LinearIsometryEquiv.coe_toLinearEquiv, LinearIsometryEquiv.nnnorm_map]
@@ -1012,23 +1012,33 @@ lemma norm_toLp_one {β} [SeminormedAddCommGroup β] (hp : p ≠ ∞) [One β] :
10121012 ‖toLp p (1 : ι → β)‖ = (Fintype.card ι : ℝ≥0 ) ^ (1 / p).toReal * ‖(1 : β)‖ :=
10131013 (norm_toLp_const hp (1 : β)).trans rfl
10141014
1015- variable (𝕜 p)
1015+ end Fintype
1016+
1017+ section
1018+
1019+ variable [Semiring 𝕜] [∀ i, SeminormedAddCommGroup (β i)] [∀ i, Module 𝕜 (β i)]
10161020
10171021/-- `WithLp.linearEquiv` as a continuous linear equivalence. -/
1018- @[simps! -fullyApplied apply symm_apply]
1022+ @[simps! apply symm_apply]
10191023def continuousLinearEquiv : PiLp p β ≃L[𝕜] ∀ i, β i where
10201024 toLinearEquiv := WithLp.linearEquiv _ _ _
10211025 continuous_toFun := continuous_ofLp _ _
10221026 continuous_invFun := continuous_toLp p _
10231027
1028+ lemma coe_continuousLinearEquiv :
1029+ ⇑(PiLp.continuousLinearEquiv p 𝕜 β) = ofLp := rfl
1030+
1031+ lemma coe_symm_continuousLinearEquiv :
1032+ ⇑(PiLp.continuousLinearEquiv p 𝕜 β).symm = toLp p := rfl
1033+
10241034variable {𝕜} in
10251035/-- The projection on the `i`-th coordinate of `PiLp p β`, as a continuous linear map. -/
10261036@[simps!]
10271037def proj (i : ι) : PiLp p β →L[𝕜] β i where
10281038 __ := projₗ p β i
10291039 cont := PiLp.continuous_apply ..
10301040
1031- end Fintype
1041+ end
10321042
10331043section Basis
10341044
@@ -1042,7 +1052,7 @@ def basisFun : Basis ι 𝕜 (PiLp p fun _ : ι => 𝕜) :=
10421052@[simp]
10431053theorem basisFun_apply [DecidableEq ι] (i) :
10441054 basisFun p 𝕜 ι i = toLp p (Pi.single i 1 ) := by
1045- simp_rw [basisFun, Basis.coe_ofEquivFun, WithLp.linearEquiv_symm_apply ]
1055+ simp_rw [basisFun, Basis.coe_ofEquivFun, WithLp.coe_symm_linearEquiv ]
10461056
10471057@[simp]
10481058theorem basisFun_repr (x : PiLp p fun _ : ι => 𝕜) (i : ι) : (basisFun p 𝕜 ι).repr x i = x i :=
0 commit comments