@@ -25,7 +25,7 @@ their intersection belongs to `l` as well.
2525 `c > ℵ₀` is a `CountableInterFilter`.
2626* `CountableInterFilter.toCardinalInterFilter` establishes that every `CountableInterFilter l` is a
2727 `CardinalInterFilter l ℵ₁`.
28- * `CardinalInterFilter.of_CardinalInterFilter_of_lt ` establishes that we have
28+ * `CardinalInterFilter.of_cardinalInterFilter_of_lt ` establishes that we have
2929 `CardinalInterFilter l c` → `CardinalInterFilter l a` for all `a < c`.
3030
3131 ## Tags
@@ -77,7 +77,7 @@ theorem cardinalInterFilter_aleph_one_iff :
7777 CardinalInterFilter.cardinal_sInter_mem S ((countable_iff_lt_aleph_one S).1 h) a⟩,
7878 fun _ ↦ CountableInterFilter.toCardinalInterFilter l⟩
7979
80- /-- Every CardinalInterFilter for some c also is a CardinalInterFilter for some a ≤ c -/
80+ /-- Every ` CardinalInterFilter` for some `c` also is a ` CardinalInterFilter` for any ` a ≤ c`. -/
8181theorem CardinalInterFilter.of_cardinalInterFilter_of_le (l : Filter α) [CardinalInterFilter l c]
8282 {a : Cardinal.{u}} (hac : a ≤ c) :
8383 CardinalInterFilter l a where
@@ -287,7 +287,8 @@ inductive CardinalGenerateSets : Set α → Prop
287287 | sInter {S : Set (Set α)} :
288288 (#S < c) → (∀ s ∈ S, CardinalGenerateSets s) → CardinalGenerateSets (⋂₀ S)
289289
290- /-- `Filter.cardinalGenerate c g` is the greatest `cardinalInterFilter c` containing `g`. -/
290+ /-- Assuming `2 < c`, `Filter.cardinalGenerate c g` is the greatest `CardinalInterFilter c`
291+ containing `g`. -/
291292def cardinalGenerate (hc : 2 < c) : Filter α :=
292293 ofCardinalInter (CardinalGenerateSets g) hc (fun _ => CardinalGenerateSets.sInter) fun _ _ =>
293294 CardinalGenerateSets.superset
@@ -301,7 +302,7 @@ variable {g}
301302
302303/-- A set is in the `cardinalInterFilter` generated by `g` if and only if
303304it contains an intersection of `c` elements of `g`. -/
304- theorem mem_cardinaleGenerate_iff {s : Set α} {hreg : c.IsRegular} :
305+ theorem mem_cardinalGenerate_iff {s : Set α} {hreg : c.IsRegular} :
305306 s ∈ cardinalGenerate g (IsRegular.nat_lt hreg 2 ) ↔
306307 ∃ S : Set (Set α), S ⊆ g ∧ (#S < c) ∧ ⋂₀ S ⊆ s := by
307308 constructor <;> intro h
@@ -324,6 +325,8 @@ theorem mem_cardinaleGenerate_iff {s : Set α} {hreg : c.IsRegular} :
324325 exact mem_of_superset ((cardinal_sInter_mem Sct).mpr
325326 (fun s H => CardinalGenerateSets.basic (Sg H))) hS
326327
328+ @[deprecated (since := "2025-11-14")] alias mem_cardinaleGenerate_iff := mem_cardinalGenerate_iff
329+
327330theorem le_cardinalGenerate_iff_of_cardinalInterFilter {f : Filter α} [CardinalInterFilter f c]
328331 (hc : 2 < c) : f ≤ cardinalGenerate g hc ↔ g ⊆ f.sets := by
329332 constructor <;> intro h
@@ -335,7 +338,7 @@ theorem le_cardinalGenerate_iff_of_cardinalInterFilter {f : Filter α} [Cardinal
335338 | superset _ st ih => exact mem_of_superset ih st
336339 | sInter Sct _ ih => exact (cardinal_sInter_mem Sct).mpr ih
337340
338- /-- `cardinalGenerate g hc` is the greatest `cardinalInterFilter c` containing `g`. -/
341+ /-- `cardinalGenerate g hc` is the greatest `CardinalInterFilter c` containing `g`. -/
339342theorem cardinalGenerate_isGreatest (hc : 2 < c) :
340343 IsGreatest { f : Filter α | CardinalInterFilter f c ∧ g ⊆ f.sets } (cardinalGenerate g hc) := by
341344 refine ⟨⟨cardinalInter_ofCardinalGenerate _ _, fun s => CardinalGenerateSets.basic⟩, ?_⟩
0 commit comments