@@ -172,25 +172,17 @@ instance : Zero 𝓓^{n}_{K}(E, F) where
172172lemma coe_zero : (0 : 𝓓^{n}_{K}(E, F)) = (0 : E → F) :=
173173 rfl
174174
175- @[simp]
176- lemma zero_apply (x : E) : (0 : 𝓓^{n}_{K}(E, F)) x = 0 :=
177- rfl
178-
179175instance : Add 𝓓^{n}_{K}(E, F) where
180176 add f g := .mk (f + g) (f.contDiff.add g.contDiff) <| by
181177 rw [← add_zero 0 ]
182178 exact f.zero_on_compl.comp_left₂ g.zero_on_compl
183179
184- -- TODO: can this and the next lemma be auto-generated, e.g. using `simps`?
180+ -- TODO: can this lemma be auto-generated, e.g. using `simps`?
185181-- Investigate the same question for `zero` above and `sub` , `neg` and `smul` below.
186182@[simp]
187183lemma coe_add (f g : 𝓓^{n}_{K}(E, F)) : (f + g : 𝓓^{n}_{K}(E, F)) = (f : E → F) + g :=
188184 rfl
189185
190- @[simp]
191- lemma add_apply (f g : 𝓓^{n}_{K}(E, F)) (x : E) : (f + g) x = f x + g x :=
192- rfl
193-
194186instance : Neg 𝓓^{n}_{K}(E, F) where
195187 neg f := .mk (-f) (f.contDiff.neg) <| by
196188 rw [← neg_zero]
@@ -200,10 +192,6 @@ instance : Neg 𝓓^{n}_{K}(E, F) where
200192lemma coe_neg (f : 𝓓^{n}_{K}(E, F)) : (-f : 𝓓^{n}_{K}(E, F)) = (-f : E → F) :=
201193 rfl
202194
203- @[simp]
204- theorem neg_apply {f : 𝓓^{n}_{K}(E, F)} {x : E} : (-f) x = - f x :=
205- rfl
206-
207195instance instSub : Sub 𝓓^{n}_{K}(E, F) where
208196 sub f g := .mk (f - g) (f.contDiff.sub g.contDiff) <| by
209197 rw [← sub_zero 0 ]
@@ -213,10 +201,6 @@ instance instSub : Sub 𝓓^{n}_{K}(E, F) where
213201lemma coe_sub (f g : 𝓓^{n}_{K}(E, F)) : (f - g : 𝓓^{n}_{K}(E, F)) = (f : E → F) - g :=
214202 rfl
215203
216- @[simp]
217- theorem sub_apply {f g : 𝓓^{n}_{K}(E, F)} {x : E} : (f - g) x = f x - g x :=
218- rfl
219-
220204instance instSMul {R} [Semiring R] [Module R F] [SMulCommClass ℝ R F] [ContinuousConstSMul R F] :
221205 SMul R 𝓓^{n}_{K}(E, F) where
222206 smul c f := .mk (c • (f : E → F)) (f.contDiff.const_smul c) <| by
@@ -228,11 +212,6 @@ lemma coe_smul {R} [Semiring R] [Module R F] [SMulCommClass ℝ R F] [Continuous
228212 (c : R) (f : 𝓓^{n}_{K}(E, F)) : (c • f : 𝓓^{n}_{K}(E, F)) = c • (f : E → F) :=
229213 rfl
230214
231- @[simp]
232- lemma smul_apply {R} [Semiring R] [Module R F] [SMulCommClass ℝ R F] [ContinuousConstSMul R F]
233- (c : R) (f : 𝓓^{n}_{K}(E, F)) (x : E) : (c • f) x = c • (f x) :=
234- rfl
235-
236215instance : AddCommGroup 𝓓^{n}_{K}(E, F) :=
237216 DFunLike.coe_injective.addCommGroup _ rfl (fun _ _ ↦ rfl) (fun _ ↦ rfl) (fun _ _ ↦ rfl)
238217 (fun _ _ ↦ rfl) fun _ _ ↦ rfl
0 commit comments