@@ -286,8 +286,10 @@ theorem injOn_insert {f : α → β} {s : Set α} {a : α} (has : a ∉ s) :
286286 rw [← union_singleton, injOn_union (disjoint_singleton_right.2 has)]
287287 simp
288288
289- theorem injective_iff_injOn_univ : Injective f ↔ InjOn f univ :=
290- ⟨fun h _ _ _ _ hxy => h hxy, fun h _ _ heq => h trivial trivial heq⟩
289+ @[simp] lemma injOn_univ : InjOn f univ ↔ Injective f := by simp [InjOn, Injective]
290+
291+ @[deprecated injOn_univ (since := "2025-10-27")]
292+ theorem injective_iff_injOn_univ : Injective f ↔ InjOn f univ := injOn_univ.symm
291293
292294theorem injOn_of_injective (h : Injective f) {s : Set α} : InjOn f s := fun _ _ _ _ hxy => h hxy
293295
@@ -530,9 +532,15 @@ lemma surjOn_of_subsingleton' [Subsingleton β] (f : α → β) (h : t.Nonempty
530532lemma surjOn_of_subsingleton [Subsingleton α] (f : α → α) (s : Set α) : SurjOn f s s :=
531533 surjOn_of_subsingleton' _ id
532534
533- theorem surjective_iff_surjOn_univ : Surjective f ↔ SurjOn f univ univ := by
535+ @[simp] lemma surjOn_univ : SurjOn f univ univ ↔ Surjective f := by
534536 simp [Surjective, SurjOn, subset_def]
535537
538+ protected lemma _root_.Function.Surjective.surjOn (hf : Surjective f) : SurjOn f univ t :=
539+ (surjOn_univ.2 hf).mono .rfl (subset_univ _)
540+
541+ @[deprecated surjOn_univ (since := "2025-10-31")]
542+ theorem surjective_iff_surjOn_univ : Surjective f ↔ SurjOn f univ univ := surjOn_univ.symm
543+
536544theorem SurjOn.image_eq_of_mapsTo (h₁ : SurjOn f s t) (h₂ : MapsTo f s t) : f '' s = t :=
537545 eq_of_subset_of_subset h₂.image_subset h₁
538546
@@ -694,16 +702,12 @@ theorem BijOn.bijective (h : BijOn f s t) : Bijective (h.mapsTo.restrict f s t)
694702 let ⟨x, hx, hxy⟩ := h.surjOn hy
695703 ⟨⟨x, hx⟩, Subtype.eq hxy⟩⟩
696704
697- theorem bijective_iff_bijOn_univ : Bijective f ↔ BijOn f univ univ :=
698- Iff.intro
699- (fun h =>
700- let ⟨inj, surj⟩ := h
701- ⟨mapsTo_univ f _, inj.injOn, Iff.mp surjective_iff_surjOn_univ surj⟩)
702- fun h =>
703- let ⟨_map, inj, surj⟩ := h
704- ⟨Iff.mpr injective_iff_injOn_univ inj, Iff.mpr surjective_iff_surjOn_univ surj⟩
705+ @[simp] lemma bijOn_univ : BijOn f univ univ ↔ Bijective f := by simp [Bijective, BijOn]
705706
706- alias ⟨_root_.Function.Bijective.bijOn_univ, _⟩ := bijective_iff_bijOn_univ
707+ protected alias ⟨_, _root_.Function.Bijective.bijOn_univ⟩ := bijOn_univ
708+
709+ @[deprecated bijOn_univ (since := "2025-10-31")]
710+ theorem bijective_iff_bijOn_univ : Bijective f ↔ BijOn f univ univ := bijOn_univ.symm
707711
708712theorem BijOn.compl (hst : BijOn f s t) (hf : Bijective f) : BijOn f sᶜ tᶜ :=
709713 ⟨hst.surjOn.mapsTo_compl hf.1 , hf.1 .injOn, hst.mapsTo.surjOn_compl hf.2 ⟩
@@ -1089,9 +1093,6 @@ variable {fa : α → α} {fb : β → β} {f : α → β} {g : β → γ} {s t
10891093theorem Injective.comp_injOn (hg : Injective g) (hf : s.InjOn f) : s.InjOn (g ∘ f) :=
10901094 hg.injOn.comp hf (mapsTo_univ _ _)
10911095
1092- theorem Surjective.surjOn (hf : Surjective f) (s : Set β) : SurjOn f univ s :=
1093- (surjective_iff_surjOn_univ.1 hf).mono (Subset.refl _) (subset_univ _)
1094-
10951096theorem LeftInverse.leftInvOn {g : β → α} (h : LeftInverse f g) (s : Set β) : LeftInvOn f g s :=
10961097 fun x _ => h x
10971098
@@ -1123,7 +1124,7 @@ theorem surjOn_image (h : Semiconj f fa fb) (ha : SurjOn fa s t) : SurjOn fb (f
11231124theorem surjOn_range (h : Semiconj f fa fb) (ha : Surjective fa) :
11241125 SurjOn fb (range f) (range f) := by
11251126 rw [← image_univ]
1126- exact h.surjOn_image ( ha.surjOn univ)
1127+ exact h.surjOn_image ha.surjOn
11271128
11281129theorem injOn_image (h : Semiconj f fa fb) (ha : InjOn fa s) (hf : InjOn f (fa '' s)) :
11291130 InjOn fb (f '' s) := by
@@ -1144,7 +1145,7 @@ theorem bijOn_image (h : Semiconj f fa fb) (ha : BijOn fa s t) (hf : InjOn f t)
11441145theorem bijOn_range (h : Semiconj f fa fb) (ha : Bijective fa) (hf : Injective f) :
11451146 BijOn fb (range f) (range f) := by
11461147 rw [← image_univ]
1147- exact h.bijOn_image (bijective_iff_bijOn_univ. 1 ha) hf.injOn
1148+ exact h.bijOn_image ha.bijOn_univ hf.injOn
11481149
11491150theorem mapsTo_preimage (h : Semiconj f fa fb) {s t : Set β} (hb : MapsTo fb s t) :
11501151 MapsTo fa (f ⁻¹' s) (f ⁻¹' t) := fun x hx => by simp only [mem_preimage, h x, hb hx]
0 commit comments