@@ -25,6 +25,8 @@ Banach space with second countable topology.
2525In the following theorems, if the name ends with `off_countable`, then the actual theorem assumes
2626differentiability at all but countably many points of the set mentioned below.
2727
28+ ### Rectangle integrals
29+
2830* `Complex.integral_boundary_rect_of_hasFDerivAt_real_off_countable`: If a function
2931 `f : ℂ → E` is continuous on a closed rectangle and *real* differentiable on its interior, then
3032 its integral over the boundary of this rectangle is equal to the integral of
@@ -35,6 +37,8 @@ differentiability at all but countably many points of the set mentioned below.
3537 `f : ℂ → E` is continuous on a closed rectangle and is *complex* differentiable on its interior,
3638 then its integral over the boundary of this rectangle is equal to zero.
3739
40+ ### Annuli and circles
41+
3842* `Complex.circleIntegral_sub_center_inv_smul_eq_of_differentiable_on_annulus_off_countable`: If a
3943 function `f : ℂ → E` is continuous on a closed annulus `{z | r ≤ |z - c| ≤ R}` and is complex
4044 differentiable on its interior `{z | r < |z - c| < R}`, then the integrals of `(z - c)⁻¹ • f z`
@@ -55,6 +59,8 @@ differentiability at all but countably many points of the set mentioned below.
5559 disc the integral of `(z - w)⁻¹ • f z` over the boundary of the disc is equal to `2πif(w)`.
5660 Two versions of the lemma put the multiplier `2πi` at the different sides of the equality.
5761
62+ ### Analyticity
63+
5864* `Complex.hasFPowerSeriesOnBall_of_differentiable_off_countable`: If `f : ℂ → E` is continuous
5965 on a closed disc of positive radius and is complex differentiable on the corresponding open disc,
6066 then it is analytic on the corresponding open disc, and the coefficients of the power series are
@@ -72,6 +78,13 @@ differentiability at all but countably many points of the set mentioned below.
7278 `cauchyPowerSeries f z R` is a formal power series representing `f` at `z` with infinite
7379 radius of convergence (this holds for any choice of `0 < R`).
7480
81+ ### Higher derivatives
82+
83+ * `Complex.circleIntegral_one_div_sub_center_pow_smul_of_differentiable_on_off_countable`
84+ **Cauchy integral formula for derivatives** : formula for the higher derivatives of `f` at the
85+ centre `c` of a disc in terms of circle integrals of `f w / (w - c) ^ (n + 1)` around the
86+ boundary circle.
87+
7588 ## Implementation details
7689
7790The proof of the Cauchy integral formula in this file is based on a very general version of the
@@ -155,6 +168,11 @@ variable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E]
155168
156169namespace Complex
157170
171+ section rectangle
172+ /-!
173+ ## Functions on rectangles
174+ -/
175+
158176/-- Suppose that a function `f : ℂ → E` is continuous on a closed rectangle with opposite corners at
159177`z w : ℂ`, is *real* differentiable at all but countably many points of the corresponding open
160178rectangle, and $\frac{\partial f}{\partial \bar z}$ is integrable on this rectangle. Then the
@@ -280,6 +298,13 @@ theorem integral_boundary_rect_eq_zero_of_differentiableOn (f : ℂ → E) (z w
280298 H.mono <|
281299 inter_subset_inter (preimage_mono Ioo_subset_Icc_self) (preimage_mono Ioo_subset_Icc_self)
282300
301+ end rectangle
302+
303+ section annulus
304+ /-!
305+ ## Functions on annuli
306+ -/
307+
283308/-- If `f : ℂ → E` is continuous on the closed annulus `r ≤ ‖z - c‖ ≤ R`, `0 < r ≤ R`,
284309and is complex differentiable at all but countably many points of its interior,
285310then the integrals of `f z / (z - c)` (formally, `(z - c)⁻¹ • f z`)
@@ -334,8 +359,15 @@ theorem circleIntegral_eq_of_differentiable_on_annulus_off_countable {c : ℂ} {
334359 (differentiableAt_id.sub_const _).smul (hd z hz))
335360 _ = ∮ z in C(c, r), f z := circleIntegral.integral_sub_inv_smul_sub_smul _ _ _ _
336361
362+ end annulus
363+
337364variable [CompleteSpace E]
338365
366+ section circle
367+ /-!
368+ ## Circle integrals
369+ -/
370+
339371/-- **Cauchy integral formula** for the value at the center of a disc. If `f` is continuous on a
340372punctured closed disc of radius `R`, is differentiable at all but countably many points of the
341373interior of this disc, and has a limit `y` at the center of the disc, then the integral
@@ -533,6 +565,13 @@ theorem circleIntegral_div_sub_of_differentiable_on_off_countable {R : ℝ} {c w
533565 simpa only [smul_eq_mul, div_eq_inv_mul] using
534566 circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd
535567
568+ end circle
569+
570+ section analyticity
571+ /-!
572+ ## Applications to analyticity
573+ -/
574+
536575/-- If `f : ℂ → E` is continuous on a closed ball of positive radius and is differentiable at all
537576but countably many points of the corresponding open ball, then it is analytic on the open ball with
538577coefficients of the power series given by Cauchy integral formulas. -/
@@ -650,4 +689,71 @@ theorem analyticAt_iff_eventually_differentiableAt {f : ℂ → E} {c : ℂ} :
650689 exact (d z m).differentiableWithinAt
651690 exact h _ m
652691
692+ end analyticity
693+
694+ section derivatives
695+ /-!
696+ ## Circle integrals for higher derivatives
697+
698+ TODO: add a version for `w ∈ Metric.ball c R`.
699+ -/
700+
701+ variable {R : ℝ} {f : ℂ → E} {c : ℂ} {s : Set ℂ}
702+
703+ /-- **Cauchy integral formula for derivatives** , assuming `f` is continuous on a closed ball and
704+ differentiable on its interior away from a countable set. -/
705+ lemma circleIntegral_one_div_sub_center_pow_smul_of_differentiable_on_off_countable
706+ (h0 : 0 < R) (n : ℕ) (hs : s.Countable)
707+ (hc : ContinuousOn f (closedBall c R)) (hd : ∀ z ∈ ball c R \ s, DifferentiableAt ℂ f z) :
708+ ∮ z in C(c, R), (1 / (z - c) ^ (n + 1 )) • f z
709+ = (2 * π * I / n.factorial) • iteratedDeriv n f c := by
710+ have := hasFPowerSeriesOnBall_of_differentiable_off_countable (R := ⟨R, h0.le⟩) hs hc hd h0
711+ |>.factorial_smul 1 n
712+ rw [iteratedFDeriv_apply_eq_iteratedDeriv_mul_prod, Finset.prod_const_one, one_smul] at this
713+ rw [← this, cauchyPowerSeries_apply, ← Nat.cast_smul_eq_nsmul ℂ, ← mul_smul, ← mul_smul,
714+ div_mul_cancel₀ _ (mod_cast n.factorial_ne_zero), mul_inv_cancel₀ two_pi_I_ne_zero]
715+ simp [← mul_smul, pow_succ, mul_comm]
716+
717+ /-- **Cauchy integral formula for the first order derivative** , assuming `f` is continuous on a
718+ closed ball and differentiable on its interior away from a countable set. -/
719+ lemma differentiable_on_off_countable_deriv_eq_smul_circleIntegral
720+ (h0 : 0 < R) (hs : s.Countable) (hc : ContinuousOn f (closedBall c R))
721+ (hd : ∀ z ∈ ball c R \ s, DifferentiableAt ℂ f z) :
722+ ∮ z in C(c, R), (1 / (z - c) ^ 2 ) • f z = (2 * π * I) • deriv f c := by
723+ simpa using circleIntegral_one_div_sub_center_pow_smul_of_differentiable_on_off_countable
724+ h0 1 hs hc hd
725+
726+ /-- **Cauchy integral formula for derivatives** , assuming `f` is continuous on a closed ball and
727+ differentiable on its interior. -/
728+ lemma _root_.DiffContOnCl.circleIntegral_one_div_sub_center_pow_smul
729+ (h0 : 0 < R) (n : ℕ) (hc : DiffContOnCl ℂ f (ball c R)) :
730+ ∮ z in C(c, R), (1 / (z - c) ^ (n + 1 )) • f z
731+ = (2 * π * I / n.factorial) • iteratedDeriv n f c :=
732+ c.circleIntegral_one_div_sub_center_pow_smul_of_differentiable_on_off_countable h0 n
733+ Set.countable_empty hc.continuousOn_ball fun _ hx ↦ hc.differentiableAt isOpen_ball hx.1
734+
735+ /-- **Cauchy integral formula for the first order derivative** , assuming `f` is continuous on a
736+ closed ball and differentiable on its interior. -/
737+ lemma _root_.DiffContOnCl.deriv_eq_smul_circleIntegral (h0 : 0 < R)
738+ (hc : DiffContOnCl ℂ f (ball c R)) :
739+ ∮ z in C(c, R), (1 / (z - c) ^ 2 ) • f z = (2 * π * I) • deriv f c := by
740+ simpa using DiffContOnCl.circleIntegral_one_div_sub_center_pow_smul h0 1 hc
741+
742+ /-- **Cauchy integral formula for derivatives** , assuming `f` is differentiable on a closed ball. -/
743+ lemma _root_.DifferentiableOn.circleIntegral_one_div_sub_center_pow_smul (h0 : 0 < R) (n : ℕ)
744+ (hc : DifferentiableOn ℂ f (closedBall c R)) :
745+ ∮ z in C(c, R), (1 / (z - c) ^ (n + 1 )) • f z
746+ = (2 * π * I / n.factorial) • iteratedDeriv n f c :=
747+ (hc.mono closure_ball_subset_closedBall).diffContOnCl
748+ |>.circleIntegral_one_div_sub_center_pow_smul h0 n
749+
750+ /-- **Cauchy integral formula for the first order derivative** , assuming `f` is differentiable on
751+ a closed ball. -/
752+ lemma _root_.DifferentiableOn.deriv_eq_smul_circleIntegral (h0 : 0 < R)
753+ (hc : DifferentiableOn ℂ f (closedBall c R)) :
754+ ∮ z in C(c, R), (1 / (z - c) ^ 2 ) • f z = (2 * π * I) • deriv f c := by
755+ simpa using DifferentiableOn.circleIntegral_one_div_sub_center_pow_smul h0 1 hc
756+
757+ end derivatives
758+
653759end Complex
0 commit comments