|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Andrew Yang. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Andrew Yang |
| 5 | +-/ |
| 6 | +import Mathlib.AlgebraicGeometry.PullbackCarrier |
| 7 | +import Mathlib.Topology.LocalAtTarget |
| 8 | + |
| 9 | +/-! |
| 10 | +# Universally injective morphism |
| 11 | +
|
| 12 | +A morphism of schemes `f : X ⟶ Y` is universally injective if `X ×[Y] Y' ⟶ Y'` is injective |
| 13 | +for all base changes `Y' ⟶ Y`. This is equivalent to the diagonal morphism being surjective |
| 14 | +(`AlgebraicGeometry.UniversallyInjective.iff_diagonal`). |
| 15 | +
|
| 16 | +We show that being universally injective is local at the target, and is stable under |
| 17 | +compositions and base changes. |
| 18 | +
|
| 19 | +## TODO |
| 20 | +- https://stacks.math.columbia.edu/tag/01S4 |
| 21 | + Show that this is equivalent to radicial morphisms |
| 22 | + (injective + purely inseparable residue field extensions) |
| 23 | +
|
| 24 | +-/ |
| 25 | + |
| 26 | +noncomputable section |
| 27 | + |
| 28 | +open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace |
| 29 | + |
| 30 | +universe v u |
| 31 | + |
| 32 | +namespace AlgebraicGeometry |
| 33 | + |
| 34 | +variable {X Y : Scheme.{u}} (f : X ⟶ Y) |
| 35 | + |
| 36 | +open CategoryTheory.MorphismProperty Function |
| 37 | + |
| 38 | +/-- |
| 39 | +A morphism of schemes `f : X ⟶ Y` is universally injective if the base change `X ×[Y] Y' ⟶ Y'` |
| 40 | +along any morphism `Y' ⟶ Y` is injective (on points). |
| 41 | +-/ |
| 42 | +@[mk_iff] |
| 43 | +class UniversallyInjective (f : X ⟶ Y) : Prop where |
| 44 | + universally_injective : universally (topologically (Injective ·)) f |
| 45 | + |
| 46 | +theorem Scheme.Hom.injective (f : X.Hom Y) [UniversallyInjective f] : |
| 47 | + Function.Injective f.base := |
| 48 | + UniversallyInjective.universally_injective _ _ _ .of_id_snd |
| 49 | + |
| 50 | +theorem universallyInjective_eq : |
| 51 | + @UniversallyInjective = universally (topologically (Injective ·)) := by |
| 52 | + ext X Y f; rw [universallyInjective_iff] |
| 53 | + |
| 54 | +theorem universallyInjective_eq_diagonal : |
| 55 | + @UniversallyInjective = diagonal @Surjective := by |
| 56 | + apply le_antisymm |
| 57 | + · intro X Y f hf |
| 58 | + refine ⟨fun x ↦ ⟨(pullback.fst f f).base x, hf.1 _ _ _ (IsPullback.of_hasPullback f f) ?_⟩⟩ |
| 59 | + rw [← Scheme.comp_base_apply, pullback.diagonal_fst] |
| 60 | + rfl |
| 61 | + · rw [← universally_eq_iff.mpr (inferInstanceAs (IsStableUnderBaseChange (diagonal @Surjective))), |
| 62 | + universallyInjective_eq] |
| 63 | + apply universally_mono |
| 64 | + intro X Y f hf x₁ x₂ e |
| 65 | + obtain ⟨t, ht₁, ht₂⟩ := Scheme.Pullback.exists_preimage_pullback _ _ e |
| 66 | + obtain ⟨t, rfl⟩ := hf.1 t |
| 67 | + rw [← ht₁, ← ht₂, ← Scheme.comp_base_apply, ← Scheme.comp_base_apply, pullback.diagonal_fst, |
| 68 | + pullback.diagonal_snd] |
| 69 | + |
| 70 | +theorem UniversallyInjective.iff_diagonal : |
| 71 | + UniversallyInjective f ↔ Surjective (pullback.diagonal f) := by |
| 72 | + rw [universallyInjective_eq_diagonal]; rfl |
| 73 | + |
| 74 | +instance (priority := 900) [Mono f] : UniversallyInjective f := |
| 75 | + have := (pullback.isIso_diagonal_iff f).mpr inferInstance |
| 76 | + (UniversallyInjective.iff_diagonal f).mpr inferInstance |
| 77 | + |
| 78 | +theorem UniversallyInjective.respectsIso : RespectsIso @UniversallyInjective := |
| 79 | + universallyInjective_eq_diagonal.symm ▸ inferInstance |
| 80 | + |
| 81 | +instance UniversallyInjective.isStableUnderBaseChange : |
| 82 | + IsStableUnderBaseChange @UniversallyInjective := |
| 83 | + universallyInjective_eq_diagonal.symm ▸ inferInstance |
| 84 | + |
| 85 | +instance universallyInjective_isStableUnderComposition : |
| 86 | + IsStableUnderComposition @UniversallyInjective := |
| 87 | + universallyInjective_eq ▸ inferInstance |
| 88 | + |
| 89 | +instance : MorphismProperty.IsMultiplicative @UniversallyInjective where |
| 90 | + id_mem _ := inferInstance |
| 91 | + |
| 92 | +instance universallyInjective_isLocalAtTarget : IsLocalAtTarget @UniversallyInjective := |
| 93 | + universallyInjective_eq_diagonal.symm ▸ inferInstance |
| 94 | + |
| 95 | +end AlgebraicGeometry |
0 commit comments