@@ -172,14 +172,17 @@ theorem map_obj_hom : ((map f).obj U).hom = U.hom ≫ f :=
172172@[simp]
173173theorem map_map_left : ((map f).map g).left = g.left :=
174174 rfl
175- end
176175
177176/-- If `f` is an isomorphism, `map f` is an equivalence of categories. -/
178- def mapIso {Y : T} (f : X ≅ Y) : Over X ≌ Over Y :=
177+ def mapIso (f : X ≅ Y) : Over X ≌ Over Y :=
179178 Comma.mapRightIso _ <| Discrete.natIso fun _ ↦ f
180179
181- @[simp] lemma mapIso_functor {Y : T} (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
182- @[simp] lemma mapIso_inverse {Y : T} (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
180+ @[simp] lemma mapIso_functor (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
181+ @[simp] lemma mapIso_inverse (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
182+
183+ instance [IsIso f] : (Over.map f).IsEquivalence := (Over.mapIso <| asIso f).isEquivalence_functor
184+
185+ end
183186
184187section coherences
185188/-!
@@ -586,14 +589,17 @@ theorem map_obj_hom : ((map f).obj U).hom = f ≫ U.hom :=
586589@[simp]
587590theorem map_map_right : ((map f).map g).right = g.right :=
588591 rfl
589- end
590592
591593/-- If `f` is an isomorphism, `map f` is an equivalence of categories. -/
592- def mapIso {Y : T} (f : X ≅ Y) : Under Y ≌ Under X :=
594+ def mapIso (f : X ≅ Y) : Under Y ≌ Under X :=
593595 Comma.mapLeftIso _ <| Discrete.natIso fun _ ↦ f.symm
594596
595- @[simp] lemma mapIso_functor {Y : T} (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
596- @[simp] lemma mapIso_inverse {Y : T} (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
597+ @[simp] lemma mapIso_functor (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
598+ @[simp] lemma mapIso_inverse (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
599+
600+ instance [IsIso f] : (Under.map f).IsEquivalence := (Under.mapIso <| asIso f).isEquivalence_functor
601+
602+ end
597603
598604section coherences
599605/-!
0 commit comments