Skip to content

Commit 4fba5e6

Browse files
committed
feat: Over.map of an iso is an equivalence (#27139)
From Toric
1 parent 5bcec20 commit 4fba5e6

File tree

1 file changed

+14
-8
lines changed

1 file changed

+14
-8
lines changed

Mathlib/CategoryTheory/Comma/Over/Basic.lean

Lines changed: 14 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -172,14 +172,17 @@ theorem map_obj_hom : ((map f).obj U).hom = U.hom ≫ f :=
172172
@[simp]
173173
theorem map_map_left : ((map f).map g).left = g.left :=
174174
rfl
175-
end
176175

177176
/-- If `f` is an isomorphism, `map f` is an equivalence of categories. -/
178-
def mapIso {Y : T} (f : X ≅ Y) : Over X ≌ Over Y :=
177+
def mapIso (f : X ≅ Y) : Over X ≌ Over Y :=
179178
Comma.mapRightIso _ <| Discrete.natIso fun _ ↦ f
180179

181-
@[simp] lemma mapIso_functor {Y : T} (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
182-
@[simp] lemma mapIso_inverse {Y : T} (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
180+
@[simp] lemma mapIso_functor (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
181+
@[simp] lemma mapIso_inverse (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
182+
183+
instance [IsIso f] : (Over.map f).IsEquivalence := (Over.mapIso <| asIso f).isEquivalence_functor
184+
185+
end
183186

184187
section coherences
185188
/-!
@@ -586,14 +589,17 @@ theorem map_obj_hom : ((map f).obj U).hom = f ≫ U.hom :=
586589
@[simp]
587590
theorem map_map_right : ((map f).map g).right = g.right :=
588591
rfl
589-
end
590592

591593
/-- If `f` is an isomorphism, `map f` is an equivalence of categories. -/
592-
def mapIso {Y : T} (f : X ≅ Y) : Under Y ≌ Under X :=
594+
def mapIso (f : X ≅ Y) : Under Y ≌ Under X :=
593595
Comma.mapLeftIso _ <| Discrete.natIso fun _ ↦ f.symm
594596

595-
@[simp] lemma mapIso_functor {Y : T} (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
596-
@[simp] lemma mapIso_inverse {Y : T} (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
597+
@[simp] lemma mapIso_functor (f : X ≅ Y) : (mapIso f).functor = map f.hom := rfl
598+
@[simp] lemma mapIso_inverse (f : X ≅ Y) : (mapIso f).inverse = map f.inv := rfl
599+
600+
instance [IsIso f] : (Under.map f).IsEquivalence := (Under.mapIso <| asIso f).isEquivalence_functor
601+
602+
end
597603

598604
section coherences
599605
/-!

0 commit comments

Comments
 (0)