@@ -205,7 +205,7 @@ theorem nonempty_algHom_of_exist_lifts_finset [alg : Algebra.IsAlgebraic F E]
205205/-- Given a lift `x` and an integral element `s : E` over `x.carrier` whose conjugates over
206206`x.carrier` are all in `K`, we can extend the lift to a lift whose carrier contains `s`. -/
207207theorem exists_lift_of_splits' (x : Lifts F E K) {s : E} (h1 : IsIntegral x.carrier s)
208- (h2 : (minpoly x.carrier s).Splits x.emb.toRingHom) : ∃ y, x ≤ y ∧ s ∈ y.carrier :=
208+ (h2 : (( minpoly x.carrier s).map x.emb.toRingHom).Splits ) : ∃ y, x ≤ y ∧ s ∈ y.carrier :=
209209 have I2 := (minpoly.degree_pos h1).ne'
210210 letI : Algebra x.carrier K := x.emb.toRingHom.toAlgebra
211211 let carrier := x.carrier⟮s⟯.restrictScalars F
@@ -222,7 +222,7 @@ theorem exists_lift_of_splits' (x : Lifts F E K) {s : E} (h1 : IsIntegral x.carr
222222/-- Given an integral element `s : E` over `F` whose `F`-conjugates are all in `K`,
223223any lift can be extended to one whose carrier contains `s`. -/
224224theorem exists_lift_of_splits (x : Lifts F E K) {s : E} (h1 : IsIntegral F s)
225- (h2 : (minpoly F s).Splits (algebraMap F K)) : ∃ y, x ≤ y ∧ s ∈ y.carrier :=
225+ (h2 : (( minpoly F s).map (algebraMap F K)).Splits ) : ∃ y, x ≤ y ∧ s ∈ y.carrier :=
226226 exists_lift_of_splits' x h1.tower_top <| h1.minpoly_splits_tower_top' <| by
227227 rwa [← x.emb.comp_algebraMap] at h2
228228
@@ -231,7 +231,7 @@ end Lifts
231231section
232232
233233private theorem exists_algHom_adjoin_of_splits'' {L : IntermediateField F E}
234- (f : L →ₐ[F] K) (hK : ∀ s ∈ S, IsIntegral L s ∧ (minpoly L s).Splits f.toRingHom) :
234+ (f : L →ₐ[F] K) (hK : ∀ s ∈ S, IsIntegral L s ∧ (( minpoly L s).map f.toRingHom).Splits ) :
235235 ∃ φ : adjoin L S →ₐ[F] K, φ.restrictDomain L = f := by
236236 obtain ⟨φ, hfφ, hφ⟩ := zorn_le_nonempty_Ici₀ _
237237 (fun c _ hc _ _ ↦ Lifts.exists_upper_bound c hc) ⟨L, f⟩ le_rfl
@@ -246,7 +246,7 @@ private theorem exists_algHom_adjoin_of_splits'' {L : IntermediateField F E}
246246 · convert (hK s h).2 ; ext; apply hfφ.2
247247
248248variable {L : Type *} [Field L] [Algebra F L] [Algebra L E] [IsScalarTower F L E]
249- (f : L →ₐ[F] K) (hK : ∀ s ∈ S, IsIntegral L s ∧ (minpoly L s).Splits f.toRingHom)
249+ (f : L →ₐ[F] K) (hK : ∀ s ∈ S, IsIntegral L s ∧ (( minpoly L s).map f.toRingHom).Splits )
250250
251251include hK in
252252theorem exists_algHom_adjoin_of_splits' :
@@ -278,14 +278,15 @@ theorem exists_algHom_of_adjoin_splits' (hS : adjoin L S = ⊤) :
278278 have ⟨φ, hφ⟩ := exists_algHom_adjoin_of_splits' f hK
279279 ⟨φ.comp (((equivOfEq hS).trans topEquiv).symm.toAlgHom.restrictScalars F), hφ⟩
280280
281- theorem exists_algHom_of_splits' (hK : ∀ s : E, IsIntegral L s ∧ (minpoly L s).Splits f.toRingHom) :
281+ theorem exists_algHom_of_splits'
282+ (hK : ∀ s : E, IsIntegral L s ∧ ((minpoly L s).map f.toRingHom).Splits) :
282283 ∃ φ : E →ₐ[F] K, φ.restrictDomain L = f :=
283284 exists_algHom_of_adjoin_splits' f (fun x _ ↦ hK x) (adjoin_univ L E)
284285
285286end
286287
287- variable (hK : ∀ s ∈ S, IsIntegral F s ∧ (minpoly F s).Splits (algebraMap F K))
288- (hK' : ∀ s : E, IsIntegral F s ∧ (minpoly F s).Splits (algebraMap F K))
288+ variable (hK : ∀ s ∈ S, IsIntegral F s ∧ (( minpoly F s).map (algebraMap F K)).Splits )
289+ (hK' : ∀ s : E, IsIntegral F s ∧ (( minpoly F s).map (algebraMap F K)).Splits )
289290 {L : IntermediateField F E} (f : L →ₐ[F] K) (hL : L ≤ adjoin F S) {x : E} {y : K}
290291
291292section
@@ -360,7 +361,7 @@ polynomial over `F` of elements of `K` splits. Then, for `x ∈ K`, the images o
360361of `x` over `F`. -/
361362theorem Algebra.IsAlgebraic.range_eval_eq_rootSet_minpoly_of_splits {F K : Type *} (L : Type *)
362363 [Field F] [Field K] [Field L] [Algebra F L] [Algebra F K]
363- (hA : ∀ x : K, (minpoly F x).Splits (algebraMap F L))
364+ (hA : ∀ x : K, (( minpoly F x).map (algebraMap F L)).Splits )
364365 [Algebra.IsAlgebraic F K] (x : K) :
365366 (Set.range fun (ψ : K →ₐ[F] L) => ψ x) = (minpoly F x).rootSet L := by
366367 ext a
0 commit comments