Skip to content

Commit 5495d7e

Browse files
committed
feat: aestronglyMeasurable limit if converge in measure (#31791)
We prove that if a family of `AEStronglyMeasurable` functions converges in measure to `f`, then `f` is also `AEStronglyMeasurable`. The main motivation is to prove this lemma in the Brownian motion project: RemyDegenne/brownian-motion#291.
1 parent 30c4d38 commit 5495d7e

File tree

1 file changed

+9
-1
lines changed

1 file changed

+9
-1
lines changed

Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean

Lines changed: 9 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -366,7 +366,15 @@ end TendstoInMeasureUnique
366366

367367
section AEMeasurableOf
368368

369-
variable [MeasurableSpace E] [SeminormedAddCommGroup E] [BorelSpace E]
369+
variable [PseudoEMetricSpace E]
370+
371+
theorem TendstoInMeasure.aestronglyMeasurable {u : Filter ι} [NeBot u] [IsCountablyGenerated u]
372+
{f : ι → α → E} {g : α → E} (hf : ∀ n, AEStronglyMeasurable (f n) μ)
373+
(h_tendsto : TendstoInMeasure μ f u g) : AEStronglyMeasurable g μ := by
374+
obtain ⟨ns, -, hns⟩ := h_tendsto.exists_seq_tendsto_ae'
375+
exact aestronglyMeasurable_of_tendsto_ae atTop (fun n => hf (ns n)) hns
376+
377+
variable [MeasurableSpace E] [BorelSpace E]
370378

371379
theorem TendstoInMeasure.aemeasurable {u : Filter ι} [NeBot u] [IsCountablyGenerated u]
372380
{f : ι → α → E} {g : α → E} (hf : ∀ n, AEMeasurable (f n) μ)

0 commit comments

Comments
 (0)