@@ -134,21 +134,11 @@ lemma comp_X_add_C (hp : p.Monic) (r : R) : (p.comp (X + C r)).Monic := by
134134 rw [natDegree_X_add_C] at ha
135135 exact one_ne_zero ha
136136
137- @[simp]
138- theorem natDegree_eq_zero_iff_eq_one (hp : p.Monic) : p.natDegree = 0 ↔ p = 1 := by
139- constructor <;> intro h
140- swap
141- · rw [h]
142- exact natDegree_one
143- have : p = C (p.coeff 0 ) := by
144- rw [← Polynomial.degree_le_zero_iff]
145- rwa [Polynomial.natDegree_eq_zero_iff_degree_le_zero] at h
146- rw [this]
147- rw [← h, ← Polynomial.leadingCoeff, Monic.def.1 hp, C_1]
137+ @[deprecated (since := "2025-10-26")] alias natDegree_eq_zero_iff_eq_one := natDegree_eq_zero
148138
149139@[simp]
150140theorem degree_le_zero_iff_eq_one (hp : p.Monic) : p.degree ≤ 0 ↔ p = 1 := by
151- rw [← hp.natDegree_eq_zero_iff_eq_one , natDegree_eq_zero_iff_degree_le_zero]
141+ rw [← hp.natDegree_eq_zero , natDegree_eq_zero_iff_degree_le_zero]
152142
153143theorem natDegree_mul (hp : p.Monic) (hq : q.Monic) :
154144 (p * q).natDegree = p.natDegree + q.natDegree := by
@@ -228,7 +218,7 @@ theorem Monic.eq_one_of_isUnit (hm : Monic p) (hpu : IsUnit p) : p = 1 := by
228218 obtain ⟨q, h⟩ := hpu.exists_right_inv
229219 have := hm.natDegree_mul' (right_ne_zero_of_mul_eq_one h)
230220 rw [h, natDegree_one, eq_comm, add_eq_zero] at this
231- exact hm.natDegree_eq_zero_iff_eq_one .mp this.1
221+ exact hm.natDegree_eq_zero .mp this.1
232222
233223theorem Monic.isUnit_iff (hm : p.Monic) : IsUnit p ↔ p = 1 :=
234224 ⟨hm.eq_one_of_isUnit, fun h => h.symm ▸ isUnit_one⟩
@@ -303,7 +293,7 @@ lemma Monic.irreducible_iff_natDegree (hp : p.Monic) :
303293 by_cases hp1 : p = 1 ; · simp [hp1]
304294 rw [irreducible_of_monic hp hp1, and_iff_right hp1]
305295 refine forall₄_congr fun a b ha hb => ?_
306- rw [ha.natDegree_eq_zero_iff_eq_one , hb.natDegree_eq_zero_iff_eq_one ]
296+ rw [ha.natDegree_eq_zero , hb.natDegree_eq_zero ]
307297
308298lemma Monic.irreducible_iff_natDegree' (hp : p.Monic) : Irreducible p ↔ p ≠ 1 ∧
309299 ∀ f g : R[X], f.Monic → g.Monic → f * g = p → g.natDegree ∉ Ioc 0 (p.natDegree / 2 ) := by
@@ -493,7 +483,7 @@ theorem Monic.mul_right_ne_zero (hp : Monic p) {q : R[X]} (hq : q ≠ 0) : p * q
493483theorem Monic.mul_natDegree_lt_iff (h : Monic p) {q : R[X]} :
494484 (p * q).natDegree < p.natDegree ↔ p ≠ 1 ∧ q = 0 := by
495485 by_cases hq : q = 0
496- · suffices 0 < p.natDegree ↔ p.natDegree ≠ 0 by simpa [hq, ← h.natDegree_eq_zero_iff_eq_one ]
486+ · suffices 0 < p.natDegree ↔ p.natDegree ≠ 0 by simpa [hq, ← h.natDegree_eq_zero ]
497487 exact ⟨fun h => h.ne', fun h => lt_of_le_of_ne (Nat.zero_le _) h.symm⟩
498488 · simp [h.natDegree_mul', hq]
499489
0 commit comments