@@ -120,7 +120,7 @@ section Continuous
120120
121121/-! In this section we assume π, `V`, `W` have topologies,
122122 and `L`, `e` are continuous (but `f` needn't be).
123- This is used to ensure that `e [ -L v w] ` is (a.e. strongly) measurable. We could get away with
123+ This is used to ensure that `e ( -L v w) ` is (a.e. strongly) measurable. We could get away with
124124 imposing only a measurable-space structure on π (it doesn't have to be the Borel sigma-algebra of
125125 a topology); but it seems hard to imagine cases where this extra generality would be useful, and
126126 allowing it would complicate matters in the most important use cases.
@@ -241,6 +241,38 @@ end Fubini
241241
242242end VectorFourier
243243
244+ namespace VectorFourier
245+
246+ variable {π ΞΉ E F V W : Type *} [Fintype ΞΉ] [NontriviallyNormedField π]
247+ [NormedAddCommGroup V] [NormedSpace π V] [MeasurableSpace V] [BorelSpace V]
248+ [NormedAddCommGroup W] [NormedSpace π W] [MeasurableSpace W] [BorelSpace W]
249+ {e : AddChar π π} {ΞΌ : Measure V} {L : V βL[π] W βL[π] π}
250+ [NormedAddCommGroup F] [NormedSpace β F]
251+ [NormedAddCommGroup E] [NormedSpace β E]
252+ {M : ΞΉ β Type *} [β i, NormedAddCommGroup (M i)] [β i, NormedSpace β (M i)]
253+
254+ theorem fourierIntegral_continuousLinearMap_apply
255+ {f : V β (F βL[β] E)} {a : F} {w : W} (he : Continuous e) (hf : Integrable f ΞΌ) :
256+ fourierIntegral e ΞΌ L.toLinearMapβ f w a =
257+ fourierIntegral e ΞΌ L.toLinearMapβ (fun x β¦ f x a) w := by
258+ rw [fourierIntegral, ContinuousLinearMap.integral_apply]
259+ Β· rfl
260+ Β· apply (fourierIntegral_convergent_iff he _ _).2 hf
261+ exact L.continuousβ
262+
263+ theorem fourierIntegral_continuousMultilinearMap_apply
264+ {f : V β (ContinuousMultilinearMap β M E)} {m : (i : ΞΉ) β M i} {w : W} (he : Continuous e)
265+ (hf : Integrable f ΞΌ) :
266+ fourierIntegral e ΞΌ L.toLinearMapβ f w m =
267+ fourierIntegral e ΞΌ L.toLinearMapβ (fun x β¦ f x m) w := by
268+ rw [fourierIntegral, ContinuousMultilinearMap.integral_apply]
269+ Β· rfl
270+ Β· apply (fourierIntegral_convergent_iff he _ _).2 hf
271+ exact L.continuousβ
272+
273+ end VectorFourier
274+
275+
244276/-! ## Fourier theory for functions on `π` -/
245277
246278
@@ -333,8 +365,31 @@ theorem fourierIntegral_convergent_iff' {V W : Type*} [NormedAddCommGroup V] [No
333365 VectorFourier.fourierIntegral_convergent_iff (E := E) (L := L.toLinearMapβ)
334366 continuous_fourierChar L.continuousβ _
335367
336- variable {E : Type *} [NormedAddCommGroup E] [NormedSpace β E]
337- {V : Type *} [NormedAddCommGroup V]
368+ section Apply
369+
370+ variable {ΞΉ F V W : Type *} [Fintype ΞΉ]
371+ [NormedAddCommGroup V] [NormedSpace β V] [MeasurableSpace V] [BorelSpace V]
372+ [NormedAddCommGroup W] [NormedSpace β W] [MeasurableSpace W] [BorelSpace W]
373+ {ΞΌ : Measure V} {L : V βL[β] W βL[β] β}
374+ [NormedAddCommGroup F] [NormedSpace β F]
375+ [NormedAddCommGroup E] [NormedSpace β E]
376+ {M : ΞΉ β Type *} [β i, NormedAddCommGroup (M i)] [β i, NormedSpace β (M i)]
377+
378+ theorem fourierIntegral_continuousLinearMap_apply'
379+ {f : V β (F βL[β] E)} {a : F} {w : W} (hf : Integrable f ΞΌ) :
380+ VectorFourier.fourierIntegral π ΞΌ L.toLinearMapβ f w a =
381+ VectorFourier.fourierIntegral π ΞΌ L.toLinearMapβ (fun x β¦ f x a) w :=
382+ VectorFourier.fourierIntegral_continuousLinearMap_apply continuous_fourierChar hf
383+
384+ theorem fourierIntegral_continuousMultilinearMap_apply'
385+ {f : V β ContinuousMultilinearMap β M E} {m : (i : ΞΉ) β M i} {w : W} (hf : Integrable f ΞΌ) :
386+ VectorFourier.fourierIntegral π ΞΌ L.toLinearMapβ f w m =
387+ VectorFourier.fourierIntegral π ΞΌ L.toLinearMapβ (fun x β¦ f x m) w :=
388+ VectorFourier.fourierIntegral_continuousMultilinearMap_apply continuous_fourierChar hf
389+
390+ end Apply
391+
392+ variable {V : Type *} [NormedAddCommGroup V]
338393 [InnerProductSpace β V] [MeasurableSpace V] [BorelSpace V] [FiniteDimensional β V]
339394 {W : Type *} [NormedAddCommGroup W]
340395 [InnerProductSpace β W] [MeasurableSpace W] [BorelSpace W] [FiniteDimensional β W]
@@ -370,15 +425,27 @@ lemma fourierIntegralInv_eq' (f : V β E) (w : V) :
370425 πβ» f w = β« v, Complex.exp ((β(2 * Ο * βͺv, wβ«) * Complex.I)) β’ f v := by
371426 simp_rw [fourierIntegralInv_eq, Submonoid.smul_def, Real.fourierChar_apply]
372427
373- lemma fourierIntegralInv_eq_fourierIntegral_neg (f : V β E) (w : V) :
374- πβ» f w = π f (-w) := by
375- simp [fourierIntegral_eq, fourierIntegralInv_eq]
376-
377428lemma fourierIntegral_comp_linearIsometry (A : W ββα΅’[β] V) (f : V β E) (w : W) :
378429 π (f β A) w = (π f) (A w) := by
379430 simp only [fourierIntegral_eq, β A.inner_map_map, Function.comp_apply, β
380431 MeasurePreserving.integral_comp A.measurePreserving A.toHomeomorph.measurableEmbedding]
381432
433+ lemma fourierIntegralInv_eq_fourierIntegral_neg (f : V β E) (w : V) :
434+ πβ» f w = π f (-w) := by
435+ simp [fourierIntegral_eq, fourierIntegralInv_eq]
436+
437+ lemma fourierIntegralInv_eq_fourierIntegral_comp_neg (f : V β E) :
438+ πβ» f = π (fun x β¦ f (-x)) := by
439+ ext y
440+ rw [fourierIntegralInv_eq_fourierIntegral_neg]
441+ change π f (LinearIsometryEquiv.neg β y) = π (f β LinearIsometryEquiv.neg β) y
442+ exact (fourierIntegral_comp_linearIsometry _ _ _).symm
443+
444+ lemma fourierIntegralInv_comm (f : V β E) :
445+ π (πβ» f) = πβ» (π f) := by
446+ conv_rhs => rw [fourierIntegralInv_eq_fourierIntegral_comp_neg]
447+ simp_rw [β fourierIntegralInv_eq_fourierIntegral_neg]
448+
382449lemma fourierIntegralInv_comp_linearIsometry (A : W ββα΅’[β] V) (f : V β E) (w : W) :
383450 πβ» (f β A) w = (πβ» f) (A w) := by
384451 simp [fourierIntegralInv_eq_fourierIntegral_neg, fourierIntegral_comp_linearIsometry]
@@ -403,4 +470,16 @@ theorem fourierIntegral_real_eq_integral_exp_smul (f : β β E) (w : β) :
403470 Integrable (fun v : V β¦ π (- βͺv, wβ«) β’ f v) ΞΌ β Integrable f ΞΌ :=
404471 fourierIntegral_convergent_iff' (innerSL β) w
405472
473+ theorem fourierIntegral_continuousLinearMap_apply
474+ {F : Type *} [NormedAddCommGroup F] [NormedSpace β F]
475+ {f : V β (F βL[β] E)} {a : F} {v : V} (hf : Integrable f) :
476+ π f v a = π (fun x β¦ f x a) v :=
477+ fourierIntegral_continuousLinearMap_apply' (L := innerSL β) hf
478+
479+ theorem fourierIntegral_continuousMultilinearMap_apply {ΞΉ : Type *} [Fintype ΞΉ]
480+ {M : ΞΉ β Type *} [β i, NormedAddCommGroup (M i)] [β i, NormedSpace β (M i)]
481+ {f : V β ContinuousMultilinearMap β M E} {m : (i : ΞΉ) β M i} {v : V} (hf : Integrable f) :
482+ π f v m = π (fun x β¦ f x m) v :=
483+ fourierIntegral_continuousMultilinearMap_apply' (L := innerSL β) hf
484+
406485end Real
0 commit comments