@@ -64,7 +64,6 @@ lemma sqrt_le_iff_le_sq : sqrt x β€ y β x β€ y ^ 2 := sqrt.to_galoisConnecti
6464
6565lemma le_sqrt_iff_sq_le : x β€ sqrt y β x ^ 2 β€ y := (sqrt.symm.to_galoisConnection _ _).symm
6666
67-
6867@[simp] lemma sqrt_eq_zero : sqrt x = 0 β x = 0 := by simp [sqrt_eq_iff_eq_sq]
6968
7069@[simp] lemma sqrt_eq_one : sqrt x = 1 β x = 1 := by simp [sqrt_eq_iff_eq_sq]
@@ -107,7 +106,7 @@ namespace Real
107106/-- The square root of a real number. This returns 0 for negative inputs.
108107
109108This has notation `βx`. Note that `βxβ»ΒΉ` is parsed as `β(xβ»ΒΉ)`. -/
110- noncomputable def sqrt (x : β) : β :=
109+ @[irreducible] noncomputable def sqrt (x : β) : β :=
111110 NNReal.sqrt (Real.toNNReal x)
112111
113112-- TODO: replace this with a typeclass
@@ -121,12 +120,15 @@ theorem coe_sqrt {x : ββ₯0} : (NNReal.sqrt x : β) = β(x : β) := by
121120 rw [Real.sqrt, Real.toNNReal_coe]
122121
123122@[continuity]
124- theorem continuous_sqrt : Continuous (βΒ· : β β β) :=
125- NNReal.continuous_coe.comp <| NNReal.continuous_sqrt.comp continuous_real_toNNReal
123+ theorem continuous_sqrt : Continuous (βΒ· : β β β) := by
124+ unfold sqrt
125+ exact NNReal.continuous_coe.comp <| NNReal.continuous_sqrt.comp continuous_real_toNNReal
126126
127127theorem sqrt_eq_zero_of_nonpos (h : x β€ 0 ) : sqrt x = 0 := by simp [sqrt, Real.toNNReal_eq_zero.2 h]
128128
129- @[simp] theorem sqrt_nonneg (x : β) : 0 β€ βx := NNReal.coe_nonneg _
129+ @[simp] theorem sqrt_nonneg (x : β) : 0 β€ βx := by
130+ unfold sqrt
131+ exact NNReal.coe_nonneg _
130132
131133@[simp]
132134theorem mul_self_sqrt (h : 0 β€ x) : βx * βx = x := by
0 commit comments