@@ -266,25 +266,40 @@ def sumCompl {α : Type*} (p : α → Prop) [DecidablePred p] :
266266 split_ifs <;> rfl
267267
268268@[simp]
269- theorem sumCompl_apply_inl {α} ( p : α → Prop ) [DecidablePred p] (x : { a // p a }) :
269+ theorem sumCompl_apply_inl {α} { p : α → Prop } [DecidablePred p] (x : { a // p a }) :
270270 sumCompl p (Sum.inl x) = x :=
271271 rfl
272272
273273@[simp]
274- theorem sumCompl_apply_inr {α} ( p : α → Prop ) [DecidablePred p] (x : { a // ¬p a }) :
274+ theorem sumCompl_apply_inr {α} { p : α → Prop } [DecidablePred p] (x : { a // ¬p a }) :
275275 sumCompl p (Sum.inr x) = x :=
276276 rfl
277277
278278@[simp]
279- theorem sumCompl_apply_symm_of_pos {α} ( p : α → Prop ) [DecidablePred p] ( a : α) (h : p a) :
279+ theorem sumCompl_symm_apply_of_pos {α} { p : α → Prop } [DecidablePred p] { a : α} (h : p a) :
280280 (sumCompl p).symm a = Sum.inl ⟨a, h⟩ :=
281281 dif_pos h
282282
283283@[simp]
284- theorem sumCompl_apply_symm_of_neg {α} ( p : α → Prop ) [DecidablePred p] ( a : α) (h : ¬p a) :
284+ theorem sumCompl_symm_apply_of_neg {α} { p : α → Prop } [DecidablePred p] { a : α} (h : ¬p a) :
285285 (sumCompl p).symm a = Sum.inr ⟨a, h⟩ :=
286286 dif_neg h
287287
288+ @[deprecated (since := "2025-10-28")]
289+ alias sumCompl_apply_symm_of_pos := sumCompl_symm_apply_of_pos
290+ @[deprecated (since := "2025-10-28")]
291+ alias sumCompl_apply_symm_of_neg := sumCompl_symm_apply_of_neg
292+
293+ @[simp]
294+ theorem sumCompl_symm_apply_pos {α} {p : α → Prop } [DecidablePred p] (x : {x // p x}) :
295+ (sumCompl p).symm x = Sum.inl x :=
296+ sumCompl_symm_apply_of_pos x.2
297+
298+ @[simp]
299+ theorem sumCompl_symm_apply_neg {α} {p : α → Prop } [DecidablePred p] (x : {x // ¬ p x}) :
300+ (sumCompl p).symm x = Sum.inr x :=
301+ sumCompl_symm_apply_of_neg x.2
302+
288303end sumCompl
289304
290305section
0 commit comments