@@ -26,7 +26,7 @@ open Simplicial CategoryTheory Limits
2626
2727namespace SimplexCategory
2828
29- instance {n m : ℕ } : DecidableEq (⦋n⦌ ⟶ ⦋m⦌ ) := fun a b =>
29+ instance {n m : SimplexCategory } : DecidableEq (n ⟶ m ) := fun a b =>
3030 decidable_of_iff (a.toOrderHom = b.toOrderHom) SimplexCategory.Hom.ext_iff.symm
3131
3232section Init
@@ -145,6 +145,8 @@ lemma mkOfSucc_homToOrderHom_zero {n} (i : Fin n) :
145145lemma mkOfSucc_homToOrderHom_one {n} (i : Fin n) :
146146 DFunLike.coe (F := Fin 2 →o Fin (n + 1 )) (Hom.toOrderHom (mkOfSucc i)) 1 = i.succ := rfl
147147
148+ @[simp]
149+ lemma mkOfSucc_eq_id : mkOfSucc (0 : Fin 1 ) = 𝟙 _ := by decide
148150
149151/-- The morphism `⦋2⦌ ⟶ ⦋n⦌` that picks out a specified composite of morphisms in `Fin (n+1)`. -/
150152def mkOfLeComp {n} (i j k : Fin (n + 1 )) (h₁ : i ≤ j) (h₂ : j ≤ k) :
@@ -382,6 +384,10 @@ theorem σ_comp_σ {n} {i j : Fin (n + 1)} (H : i ≤ j) :
382384 (Fin.succ_le_castSucc_iff.mpr (H.trans_lt' h)), Fin.predAbove_of_le_castSucc _ k.succ
383385 (Fin.succ_le_castSucc_iff.mpr h)]
384386
387+ lemma δ_zero_eq_const : δ (0 : Fin 2 ) = const _ _ 1 := by decide
388+
389+ lemma δ_one_eq_const : δ (1 : Fin 2 ) = const _ _ 0 := by decide
390+
385391/--
386392If `f : ⦋m⦌ ⟶ ⦋n+1⦌` is a morphism and `j` is not in the range of `f`,
387393then `factor_δ f j` is a morphism `⦋m⦌ ⟶ ⦋n⦌` such that
@@ -454,6 +460,10 @@ lemma mkOfSucc_δ_eq {n : ℕ} {i : Fin n} {j : Fin (n + 2)}
454460 rw [Fin.succAbove_castSucc_self]
455461 rfl
456462
463+ lemma mkOfSucc_one_eq_δ : mkOfSucc (1 : Fin 2 ) = δ 0 := by decide
464+
465+ lemma mkOfSucc_zero_eq_δ : mkOfSucc (0 : Fin 2 ) = δ 2 := by decide
466+
457467theorem eq_of_one_to_two (f : ⦋1 ⦌ ⟶ ⦋2 ⦌) :
458468 (∃ i, f = (δ (n := 1 ) i)) ∨ ∃ a, f = SimplexCategory.const _ _ a := by
459469 have : f.toOrderHom 0 ≤ f.toOrderHom 1 := f.toOrderHom.monotone (by decide : (0 : Fin 2 ) ≤ 1 )
0 commit comments