@@ -523,24 +523,21 @@ theorem comap_sup_eq (H K : Subgroup N) (hf : Function.Surjective f) :
523523 comap_sup_eq_of_le_range f (range_eq_top.2 hf ▸ le_top) (range_eq_top.2 hf ▸ le_top)
524524
525525@[to_additive]
526- theorem sup_subgroupOf_eq {H K L : Subgroup G} (hH : H ≤ L) (hK : K ≤ L) :
527- H.subgroupOf L ⊔ K.subgroupOf L = (H ⊔ K).subgroupOf L :=
528- comap_sup_eq_of_le_range L.subtype (hH.trans_eq L.range_subtype.symm)
529- (hK.trans_eq L.range_subtype.symm)
530-
531- @[to_additive]
532- theorem codisjoint_subgroupOf_sup (H K : Subgroup G) :
533- Codisjoint (H.subgroupOf (H ⊔ K)) (K.subgroupOf (H ⊔ K)) := by
534- rw [codisjoint_iff, sup_subgroupOf_eq, subgroupOf_self]
535- exacts [le_sup_left, le_sup_right]
536-
537- @[to_additive]
538- theorem subgroupOf_sup (A A' B : Subgroup G) (hA : A ≤ B) (hA' : A' ≤ B) :
526+ theorem subgroupOf_sup {A A' B : Subgroup G} (hA : A ≤ B) (hA' : A' ≤ B) :
539527 (A ⊔ A').subgroupOf B = A.subgroupOf B ⊔ A'.subgroupOf B := by
540528 refine
541529 map_injective_of_ker_le B.subtype (ker_le_comap _ _)
542530 (le_trans (ker_le_comap B.subtype _) le_sup_left) ?_
543531 simp only [subgroupOf, map_comap_eq, map_sup, range_subtype]
544532 rw [inf_of_le_right (sup_le hA hA'), inf_of_le_right hA', inf_of_le_right hA]
545533
534+ @[deprecated "Use in reverse direction." (since := "2025-11-03")] alias sup_subgroupOf_eq :=
535+ subgroupOf_sup
536+
537+ @[to_additive]
538+ theorem codisjoint_subgroupOf_sup (H K : Subgroup G) :
539+ Codisjoint (H.subgroupOf (H ⊔ K)) (K.subgroupOf (H ⊔ K)) := by
540+ rw [codisjoint_iff, ← subgroupOf_sup, subgroupOf_self]
541+ exacts [le_sup_left, le_sup_right]
542+
546543end Subgroup
0 commit comments