Skip to content

Commit 701ecbf

Browse files
committed
chore: rename IsTopologicalGroup.toUniformSpace to IsTopologicalGroup.rightUniformSpace (#30009)
I have plans to finally do left and right uniformities properly, but I'd like to do some of the remaining before the fact to ease review. I also take this opportunity to remove a duplication of private lemmas `extend_Z_bilin_aux` and `extend_Z_bilin_key`.
1 parent 08d91a2 commit 701ecbf

File tree

25 files changed

+110
-190
lines changed

25 files changed

+110
-190
lines changed

Mathlib/Analysis/CStarAlgebra/Matrix.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -156,8 +156,8 @@ def instL2OpMetricSpace : MetricSpace (Matrix m n 𝕜) := by
156156
dist_eq := l2OpNormedAddCommGroupAux.dist_eq }
157157
exact normed_add_comm_group.replaceUniformity <| by
158158
congr
159-
rw [← @IsUniformAddGroup.toUniformSpace_eq _ (Matrix.instUniformSpace m n 𝕜) _ _]
160-
rw [@IsUniformAddGroup.toUniformSpace_eq _ PseudoEMetricSpace.toUniformSpace _ _]
159+
rw [← @IsUniformAddGroup.rightUniformSpace_eq _ (Matrix.instUniformSpace m n 𝕜) _ _]
160+
rw [@IsUniformAddGroup.rightUniformSpace_eq _ PseudoEMetricSpace.toUniformSpace _ _]
161161

162162
scoped[Matrix.Norms.L2Operator] attribute [instance] Matrix.instL2OpMetricSpace
163163

Mathlib/Analysis/LocallyConvex/Bounded.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -403,7 +403,7 @@ variable (𝕜) in
403403
theorem Filter.Tendsto.isVonNBounded_range [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E]
404404
[TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousSMul 𝕜 E]
405405
{f : ℕ → E} {x : E} (hf : Tendsto f atTop (𝓝 x)) : Bornology.IsVonNBounded 𝕜 (range f) :=
406-
letI := IsTopologicalAddGroup.toUniformSpace E
406+
letI := IsTopologicalAddGroup.rightUniformSpace E
407407
haveI := isUniformAddGroup_of_addCommGroup (G := E)
408408
hf.cauchySeq.totallyBounded_range.isVonNBounded 𝕜
409409

Mathlib/Analysis/LocallyConvex/WithSeminorms.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -940,7 +940,7 @@ is first countable. -/
940940
theorem WithSeminorms.firstCountableTopology (hp : WithSeminorms p) :
941941
FirstCountableTopology E := by
942942
have := hp.topologicalAddGroup
943-
let _ : UniformSpace E := IsTopologicalAddGroup.toUniformSpace E
943+
let _ : UniformSpace E := IsTopologicalAddGroup.rightUniformSpace E
944944
have : IsUniformAddGroup E := isUniformAddGroup_of_addCommGroup
945945
have : (𝓝 (0 : E)).IsCountablyGenerated := by
946946
rw [p.withSeminorms_iff_nhds_eq_iInf.mp hp]

Mathlib/Analysis/Normed/Group/Quotient.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,7 @@ includes a uniform space structure which includes a topological space structure,
8484
with propositional fields asserting compatibility conditions.
8585
The usual way to define a `SeminormedAddCommGroup` is to let Lean build a uniform space structure
8686
using the provided norm, and then trivially build a proof that the norm and uniform structure are
87-
compatible. Here the uniform structure is provided using `IsTopologicalAddGroup.toUniformSpace`
87+
compatible. Here the uniform structure is provided using `IsTopologicalAddGroup.rightUniformSpace`
8888
which uses the topological structure and the group structure to build the uniform structure. This
8989
uniform structure induces the correct topological structure by construction, but the fact that it
9090
is compatible with the norm is not obvious; this is where the mathematical content explained in
@@ -203,7 +203,7 @@ variable (S) in
203203
/-- The seminormed group structure on the quotient by a subgroup. -/
204204
@[to_additive /-- The seminormed group structure on the quotient by an additive subgroup. -/]
205205
noncomputable instance instSeminormedCommGroup : SeminormedCommGroup (M ⧸ S) where
206-
toUniformSpace := IsTopologicalGroup.toUniformSpace (M ⧸ S)
206+
toUniformSpace := IsTopologicalGroup.rightUniformSpace (M ⧸ S)
207207
__ := groupSeminorm.toSeminormedCommGroup
208208
uniformity_dist := by
209209
rw [uniformity_eq_comap_nhds_one', (nhds_one_hasBasis.comap _).eq_biInf]

Mathlib/Analysis/Normed/Operator/Compact.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -304,7 +304,7 @@ variable {𝕜₁ 𝕜₂ : Type*} [NontriviallyNormedField 𝕜₁] [Nontrivial
304304
@[continuity]
305305
theorem IsCompactOperator.continuous {f : M₁ →ₛₗ[σ₁₂] M₂} (hf : IsCompactOperator f) :
306306
Continuous f := by
307-
letI : UniformSpace M₂ := IsTopologicalAddGroup.toUniformSpace _
307+
letI : UniformSpace M₂ := IsTopologicalAddGroup.rightUniformSpace _
308308
haveI : IsUniformAddGroup M₂ := isUniformAddGroup_of_addCommGroup
309309
-- Since `f` is linear, we only need to show that it is continuous at zero.
310310
-- Let `U` be a neighborhood of `0` in `M₂`.

Mathlib/Analysis/NormedSpace/Multilinear/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ instance ContinuousMultilinearMap.instContinuousEval :
7676
ContinuousEval (ContinuousMultilinearMap 𝕜 E F) (Π i, E i) F where
7777
continuous_eval := by
7878
cases nonempty_fintype ι
79-
let _ := IsTopologicalAddGroup.toUniformSpace F
79+
let _ := IsTopologicalAddGroup.rightUniformSpace F
8080
have := isUniformAddGroup_of_addCommGroup (G := F)
8181
refine (UniformOnFun.continuousOn_eval₂ fun m ↦ ?_).comp_continuous
8282
(isEmbedding_toUniformOnFun.continuous.prodMap continuous_id) fun (f, x) ↦ f.cont.continuousAt

Mathlib/Analysis/Seminorm.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1083,7 +1083,7 @@ protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [IsUni
10831083

10841084
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [IsTopologicalAddGroup E]
10851085
{p : Seminorm 𝕝 E} (hp : ContinuousAt p 0) : Continuous p := by
1086-
letI := IsTopologicalAddGroup.toUniformSpace E
1086+
letI := IsTopologicalAddGroup.rightUniformSpace E
10871087
haveI : IsUniformAddGroup E := isUniformAddGroup_of_addCommGroup
10881088
exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
10891089

Mathlib/Analysis/SpecialFunctions/Bernstein.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@ and reproduced on wikipedia.
176176
-/
177177
theorem bernsteinApproximation_uniform [LocallyConvexSpace ℝ E] (f : C(I, E)) :
178178
Tendsto (fun n : ℕ => bernsteinApproximation n f) atTop (𝓝 f) := by
179-
letI : UniformSpace E := IsTopologicalAddGroup.toUniformSpace E
179+
letI : UniformSpace E := IsTopologicalAddGroup.rightUniformSpace E
180180
have : IsUniformAddGroup E := isUniformAddGroup_of_addCommGroup
181181
/- Topology on a locally convex TVS is given by a family of seminorms `‖x‖_U = gauge U x`,
182182
where the open symmetric convex sets `U` form a basis of neighborhoods in this topology,

Mathlib/NumberTheory/LocalField/Basic.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -56,15 +56,15 @@ variable (K : Type*) [Field K] [ValuativeRel K] [TopologicalSpace K] [IsNonarchi
5656
attribute [local simp] zero_lt_iff
5757

5858
instance : IsTopologicalDivisionRing K := by
59-
letI := IsTopologicalAddGroup.toUniformSpace K
59+
letI := IsTopologicalAddGroup.rightUniformSpace K
6060
haveI := isUniformAddGroup_of_addCommGroup (G := K)
6161
infer_instance
6262

6363
lemma isCompact_closedBall (γ : ValueGroupWithZero K) : IsCompact { x | valuation K x ≤ γ } := by
6464
obtain ⟨γ, rfl⟩ := ValuativeRel.valuation_surjective γ
6565
by_cases hγ : γ = 0
6666
· simp [hγ]
67-
letI := IsTopologicalAddGroup.toUniformSpace K
67+
letI := IsTopologicalAddGroup.rightUniformSpace K
6868
letI := isUniformAddGroup_of_addCommGroup (G := K)
6969
obtain ⟨s, hs, -, hs'⟩ := LocallyCompactSpace.local_compact_nhds (0 : K) .univ Filter.univ_mem
7070
obtain ⟨r, hr, hr1, H⟩ :
@@ -95,7 +95,7 @@ instance (K : Type*) [Field K] [ValuativeRel K] [UniformSpace K] [IsUniformAddGr
9595
inferInstanceAs (valuation K).Compatible
9696

9797
instance : IsDiscreteValuationRing 𝒪[K] :=
98-
letI := IsTopologicalAddGroup.toUniformSpace K
98+
letI := IsTopologicalAddGroup.rightUniformSpace K
9999
haveI := isUniformAddGroup_of_addCommGroup (G := K)
100100
haveI : CompactSpace (Valued.integer K) := inferInstanceAs (CompactSpace 𝒪[K])
101101
Valued.integer.isDiscreteValuationRing_of_compactSpace
@@ -104,7 +104,7 @@ instance : IsDiscreteValuationRing 𝒪[K] :=
104104
noncomputable
105105
def valueGroupWithZeroIsoInt : ValueGroupWithZero K ≃*o ℤᵐ⁰ := by
106106
apply Nonempty.some
107-
letI := IsTopologicalAddGroup.toUniformSpace K
107+
letI := IsTopologicalAddGroup.rightUniformSpace K
108108
haveI := isUniformAddGroup_of_addCommGroup (G := K)
109109
obtain ⟨_⟩ := Valued.integer.locallyFiniteOrder_units_mrange_of_isCompact_integer
110110
(isCompact_iff_compactSpace.mpr (inferInstanceAs (CompactSpace 𝒪[K])))
@@ -124,7 +124,7 @@ instance : ValuativeRel.IsRankLeOne K :=
124124
(.comap (valueGroupWithZeroIsoInt K).toMonoidHom (valueGroupWithZeroIsoInt K).strictMono)
125125

126126
instance : Finite 𝓀[K] :=
127-
letI := IsTopologicalAddGroup.toUniformSpace K
127+
letI := IsTopologicalAddGroup.rightUniformSpace K
128128
haveI := isUniformAddGroup_of_addCommGroup (G := K)
129129
letI : (Valued.v (R := K)).RankOne :=
130130
⟨IsRankLeOne.nonempty.some.emb, IsRankLeOne.nonempty.some.strictMono⟩

Mathlib/Topology/Algebra/Group/Defs.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ continuous.
9292
9393
When you declare an instance that does not already have a `UniformSpace` instance,
9494
you should also provide an instance of `UniformSpace` and `IsUniformAddGroup` using
95-
`IsTopologicalAddGroup.toUniformSpace` and `isUniformAddGroup_of_addCommGroup`. -/
95+
`IsTopologicalAddGroup.rightUniformSpace` and `isUniformAddGroup_of_addCommGroup`. -/
9696
class IsTopologicalAddGroup (G : Type u) [TopologicalSpace G] [AddGroup G] : Prop
9797
extends ContinuousAdd G, ContinuousNeg G
9898

@@ -101,7 +101,7 @@ continuous.
101101
102102
When you declare an instance that does not already have a `UniformSpace` instance,
103103
you should also provide an instance of `UniformSpace` and `IsUniformGroup` using
104-
`IsTopologicalGroup.toUniformSpace` and `isUniformGroup_of_commGroup`. -/
104+
`IsTopologicalGroup.rightUniformSpace` and `isUniformGroup_of_commGroup`. -/
105105
@[to_additive]
106106
class IsTopologicalGroup (G : Type*) [TopologicalSpace G] [Group G] : Prop
107107
extends ContinuousMul G, ContinuousInv G

0 commit comments

Comments
 (0)