@@ -18,13 +18,13 @@ import Mathlib.MeasureTheory.Integral.BoundedContinuousFunction
1818
1919 ## Main results
2020
21- * `levyProkhorovDist_pseudoMetricSpace_finiteMeasure `: The Lévy-Prokhorov distance is a
22- pseudoemetric on the space of finite measures.
23- * `levyProkhorovDist_pseudoMetricSpace_probabilityMeasure `: The Lévy-Prokhorov distance is a
24- pseudoemetric on the space of probability measures.
25- * `levyProkhorov_le_convergenceInDistribution `: The topology of the Lévy-Prokhorov metric on
21+ * `LevyProkhorov.instPseudoMetricSpaceFiniteMeasure `: The Lévy-Prokhorov distance is a
22+ pseudometric on the space of finite measures.
23+ * `LevyProkhorov.instPseudoMetricSpaceProbabilityMeasure `: The Lévy-Prokhorov distance is a
24+ pseudometric on the space of probability measures.
25+ * `LevyProkhorov.le_convergenceInDistribution `: The topology of the Lévy-Prokhorov metric on
2626 probability measures is always at least as fine as the topology of convergence in distribution.
27- * `levyProkhorov_eq_convergenceInDistribution `: The topology of the Lévy-Prokhorov metric on
27+ * `LevyProkhorov.eq_convergenceInDistribution `: The topology of the Lévy-Prokhorov metric on
2828 probability measures on a separable space coincides with the topology of convergence in
2929 distribution, and in particular convergence in distribution is then pseudometrizable.
3030
@@ -104,15 +104,14 @@ lemma levyProkhorovEDist_le_max_measure_univ (μ ν : Measure Ω) :
104104 levyProkhorovEDist μ ν ≤ max (μ univ) (ν univ) := by
105105 refine sInf_le fun B _ ↦ ⟨?_, ?_⟩ <;> apply le_add_left <;> simp [measure_mono]
106106
107- lemma levyProkhorovEDist_lt_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
107+ @[simp] lemma levyProkhorovEDist_lt_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
108108 levyProkhorovEDist μ ν < ∞ :=
109109 (levyProkhorovEDist_le_max_measure_univ μ ν).trans_lt <| by simp [measure_lt_top]
110110
111- lemma levyProkhorovEDist_ne_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
111+ @[simp] lemma levyProkhorovEDist_ne_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
112112 levyProkhorovEDist μ ν ≠ ∞ := (levyProkhorovEDist_lt_top μ ν).ne
113113
114- lemma levyProkhorovEDist_self (μ : Measure Ω) :
115- levyProkhorovEDist μ μ = 0 := by
114+ @[simp] lemma levyProkhorovEDist_self (μ : Measure Ω) : levyProkhorovEDist μ μ = 0 := by
116115 rw [← nonpos_iff_eq_zero, ← csInf_Ioo zero_lt_top]
117116 refine sInf_le_sInf fun ε ⟨hε₀, hε_top⟩ B _ ↦ and_self_iff.2 ?_
118117 refine le_add_right <| measure_mono <| self_subset_thickening ?_ _
@@ -181,34 +180,8 @@ lemma levyProkhorovDist_triangle [OpensMeasurableSpace Ω] (μ ν κ : Measure
181180 · simp only [levyProkhorovDist, ENNReal.toReal_add dμν_finite dνκ_finite]
182181 · exact ENNReal.add_ne_top.mpr ⟨dμν_finite, dνκ_finite⟩
183182
184- /-- A type synonym, to be used for `Measure α`, `FiniteMeasure α`, or `ProbabilityMeasure α`,
185- when they are to be equipped with the Lévy-Prokhorov distance. -/
186- def LevyProkhorov (α : Type *) := α
187-
188- /-- The "identity" equivalence between the type synonym `LevyProkhorov α` and `α`. -/
189- def LevyProkhorov.equiv (α : Type *) : LevyProkhorov α ≃ α := Equiv.refl _
190-
191183variable [OpensMeasurableSpace Ω]
192184
193- /-- The Lévy-Prokhorov distance `levyProkhorovEDist` makes `Measure Ω` a pseudoemetric
194- space. The instance is recorded on the type synonym `LevyProkhorov (Measure Ω) := Measure Ω`. -/
195- noncomputable instance : PseudoEMetricSpace (LevyProkhorov (Measure Ω)) where
196- edist := levyProkhorovEDist
197- edist_self := levyProkhorovEDist_self
198- edist_comm := levyProkhorovEDist_comm
199- edist_triangle := levyProkhorovEDist_triangle
200-
201- /-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `FiniteMeasure Ω` a pseudometric
202- space. The instance is recorded on the type synonym
203- `LevyProkhorov (FiniteMeasure Ω) := FiniteMeasure Ω`. -/
204- noncomputable instance levyProkhorovDist_pseudoMetricSpace_finiteMeasure :
205- PseudoMetricSpace (LevyProkhorov (FiniteMeasure Ω)) where
206- dist μ ν := levyProkhorovDist μ.toMeasure ν.toMeasure
207- dist_self _ := levyProkhorovDist_self _
208- dist_comm _ _ := levyProkhorovDist_comm _ _
209- dist_triangle _ _ _ := levyProkhorovDist_triangle _ _ _
210- edist_dist μ ν := by simp [← ENNReal.ofReal_coe_nnreal]
211-
212185lemma measure_le_measure_closure_of_levyProkhorovEDist_eq_zero {μ ν : Measure Ω}
213186 (hLP : levyProkhorovEDist μ ν = 0 ) {s : Set Ω} (s_mble : MeasurableSet s)
214187 (h_finite : ∃ δ > 0 , ν (thickening δ s) ≠ ∞) :
@@ -240,46 +213,6 @@ lemma measure_eq_measure_of_levyProkhorovEDist_eq_zero_of_isClosed {μ ν : Meas
240213 (levyProkhorovEDist_comm μ ν ▸ hLP) s_closed.measurableSet hμs |>.trans <|
241214 le_of_eq (congr_arg _ s_closed.closure_eq)
242215
243- /-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `ProbabilityMeasure Ω` a pseudometric
244- space. The instance is recorded on the type synonym
245- `LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
246-
247- Note: For this pseudometric to give the topology of convergence in distribution, one must
248- furthermore assume that `Ω` is separable. -/
249- noncomputable instance levyProkhorovDist_pseudoMetricSpace_probabilityMeasure :
250- PseudoMetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) where
251- dist μ ν := levyProkhorovDist μ.toMeasure ν.toMeasure
252- dist_self _ := levyProkhorovDist_self _
253- dist_comm _ _ := levyProkhorovDist_comm _ _
254- dist_triangle _ _ _ := levyProkhorovDist_triangle _ _ _
255- edist_dist μ ν := by simp [← ENNReal.ofReal_coe_nnreal]
256-
257- lemma LevyProkhorov.dist_def (μ ν : LevyProkhorov (ProbabilityMeasure Ω)) :
258- dist μ ν = levyProkhorovDist μ.toMeasure ν.toMeasure := rfl
259-
260- /-- If `Ω` is a Borel space, then the Lévy-Prokhorov distance `levyProkhorovDist` makes
261- `ProbabilityMeasure Ω` a metric space. The instance is recorded on the type synonym
262- `LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
263-
264- Note: For this metric to give the topology of convergence in distribution, one must
265- furthermore assume that `Ω` is separable. -/
266- noncomputable instance levyProkhorovDist_metricSpace_probabilityMeasure [BorelSpace Ω] :
267- MetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) where
268- eq_of_dist_eq_zero := by
269- intro μ ν h
270- apply (LevyProkhorov.equiv _).injective
271- apply ProbabilityMeasure.toMeasure_injective
272- apply ext_of_generate_finite _ ?_ isPiSystem_isClosed ?_ (by simp)
273- · rw [BorelSpace.measurable_eq (α := Ω), borel_eq_generateFrom_isClosed]
274- · intro A A_closed
275- apply measure_eq_measure_of_levyProkhorovEDist_eq_zero_of_isClosed
276- · simpa only [levyProkhorovEDist_ne_top μ.toMeasure ν.toMeasure, mem_setOf_eq,
277- or_false, ne_eq, zero_ne_top, not_false_eq_true, toReal_zero]
278- using (toReal_eq_zero_iff _).mp h
279- · exact A_closed
280- · exact ⟨1 , Real.zero_lt_one, measure_ne_top _ _⟩
281- · exact ⟨1 , Real.zero_lt_one, measure_ne_top _ _⟩
282-
283216/-- A simple sufficient condition for bounding `levyProkhorovEDist` between probability measures
284217from above. The condition involves only one of two natural bounds, the other bound is for free. -/
285218lemma levyProkhorovEDist_le_of_forall_le
@@ -316,6 +249,104 @@ lemma levyProkhorovDist_le_of_forall_le
316249 convert h ε.toReal B ε_gt' B_mble
317250 exact (ENNReal.ofReal_toReal ε_lt_top.ne).symm
318251
252+ /-! ### Equipping measures with the Lévy-Prokhorov metric -/
253+
254+ /-- A type synonym, to be used for `Measure α`, `FiniteMeasure α`, or `ProbabilityMeasure α`,
255+ when they are to be equipped with the Lévy-Prokhorov distance. -/
256+ structure LevyProkhorov (α : Type *) where
257+ /-- Turn a measure into the corresponding element of the space of measures equipped with the
258+ Lévy-Prokhorov metric. -/
259+ ofMeasure ::
260+ /-- Turn an element of the space of measure equipped with the Lévy-Prokhorov metric into the
261+ corresponding measure. -/
262+ toMeasure : α
263+
264+ open Lean.PrettyPrinter.Delaborator in
265+ /-- This prevents `ofMeasure x` being printed as `{ toMeasure := x }` by `delabStructureInstance`.
266+ -/
267+ @[app_delab LevyProkhorov.ofMeasure]
268+ def LevyProkhorov.delabOfMeasure : Delab := delabApp
269+
270+ namespace LevyProkhorov
271+
272+ lemma toMeasure_injective {α : Type *} : (toMeasure : LevyProkhorov α → α).Injective :=
273+ fun ⟨μ⟩ ⟨ν⟩ => by congr!
274+
275+ /-- `LevyProkhorov.toMeasure` as an equiv. -/
276+ @[simps]
277+ def toMeasureEquiv {α : Type *} : LevyProkhorov α ≃ α where
278+ toFun := toMeasure
279+ invFun := ofMeasure
280+
281+ @[deprecated (since := "2025-10-28")] alias equiv := toMeasureEquiv
282+
283+ /-- The Lévy-Prokhorov distance `levyProkhorovEDist` makes `Measure Ω` a pseudoemetric
284+ space. The instance is recorded on the type synonym `LevyProkhorov (Measure Ω) := Measure Ω`. -/
285+ noncomputable instance instPseudoEMetricSpaceMeasure :
286+ PseudoEMetricSpace (LevyProkhorov (Measure Ω)) where
287+ edist μ ν := levyProkhorovEDist μ.toMeasure ν.toMeasure
288+ edist_self _ := levyProkhorovEDist_self _
289+ edist_comm _ _ := levyProkhorovEDist_comm ..
290+ edist_triangle _ _ _ := levyProkhorovEDist_triangle ..
291+
292+ /-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `FiniteMeasure Ω` a pseudometric
293+ space. The instance is recorded on the type synonym
294+ `LevyProkhorov (FiniteMeasure Ω) := FiniteMeasure Ω`. -/
295+ noncomputable instance instPseudoMetricSpaceFiniteMeasure :
296+ PseudoMetricSpace (LevyProkhorov (FiniteMeasure Ω)) where
297+ edist μ ν := levyProkhorovEDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure
298+ dist μ ν := levyProkhorovDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure
299+ dist_self _ := levyProkhorovDist_self _
300+ dist_comm _ _ := levyProkhorovDist_comm ..
301+ dist_triangle _ _ _ := levyProkhorovDist_triangle ..
302+ edist_dist μ ν := by simp [levyProkhorovDist, levyProkhorovEDist_ne_top]
303+
304+ /-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `ProbabilityMeasure Ω` a pseudometric
305+ space. The instance is recorded on the type synonym
306+ `LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
307+
308+ Note: For this pseudometric to give the topology of convergence in distribution, one must
309+ furthermore assume that `Ω` is separable. -/
310+ noncomputable instance instPseudoMetricSpaceProbabilityMeasure :
311+ PseudoMetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) :=
312+ .induced (LevyProkhorov.ofMeasure ·.toMeasure.toFiniteMeasure) inferInstance
313+
314+ lemma edist_measure_def (μ ν : LevyProkhorov (Measure Ω)) :
315+ edist μ ν = levyProkhorovEDist μ.toMeasure ν.toMeasure := rfl
316+
317+ lemma edist_finiteMeasure_def (μ ν : LevyProkhorov (FiniteMeasure Ω)) :
318+ edist μ ν = levyProkhorovEDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
319+
320+ lemma dist_finiteMeasure_def (μ ν : LevyProkhorov (FiniteMeasure Ω)) :
321+ dist μ ν = levyProkhorovDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
322+
323+ lemma edist_probabilityMeasure_def (μ ν : LevyProkhorov (ProbabilityMeasure Ω)) :
324+ edist μ ν = levyProkhorovEDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
325+
326+ lemma dist_probabilityMeasure_def (μ ν : LevyProkhorov (ProbabilityMeasure Ω)) :
327+ dist μ ν = levyProkhorovDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
328+
329+ @[deprecated (since := "2025-10-28")] alias dist_def := dist_probabilityMeasure_def
330+
331+ /-- If `Ω` is a Borel space, then the Lévy-Prokhorov distance `levyProkhorovDist` makes
332+ `ProbabilityMeasure Ω` into a metric space. The instance is recorded on the type synonym
333+ `LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
334+
335+ Note: For this metric to give the topology of convergence in distribution, one must
336+ furthermore assume that `Ω` is separable. -/
337+ noncomputable instance levyProkhorovDist_metricSpace_probabilityMeasure [BorelSpace Ω] :
338+ MetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) where
339+ eq_of_dist_eq_zero {μ ν} h := by
340+ apply toMeasure_injective
341+ apply ProbabilityMeasure.toMeasure_injective
342+ refine ext_of_generate_finite _ ?_ isPiSystem_isClosed (fun A hA ↦ ?_) (by simp)
343+ · rw [BorelSpace.measurable_eq (α := Ω), borel_eq_generateFrom_isClosed]
344+ refine measure_eq_measure_of_levyProkhorovEDist_eq_zero_of_isClosed ?_ hA ?_ ?_
345+ · simpa [dist_probabilityMeasure_def, levyProkhorovDist, toReal_eq_zero_iff] using h
346+ · exact ⟨1 , Real.zero_lt_one, measure_ne_top _ _⟩
347+ · exact ⟨1 , Real.zero_lt_one, measure_ne_top _ _⟩
348+
349+ end LevyProkhorov
319350end Levy_Prokhorov --section
320351
321352section Levy_Prokhorov_is_finer
@@ -412,12 +443,12 @@ lemma tendsto_integral_meas_thickening_le (f : Ω →ᵇ ℝ)
412443 · finiteness
413444
414445/-- The identity map `LevyProkhorov (ProbabilityMeasure Ω) → ProbabilityMeasure Ω` is continuous. -/
415- lemma LevyProkhorov.continuous_equiv_probabilityMeasure :
416- Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)) := by
446+ lemma LevyProkhorov.continuous_toMeasure_probabilityMeasure :
447+ Continuous (toMeasure (α := ProbabilityMeasure Ω)) := by
417448 refine SeqContinuous.continuous ?_
418449 intro μs ν hμs
419- set P := LevyProkhorov.equiv _ ν -- more palatable notation
420- set Ps := LevyProkhorov.equiv _ ∘ μs -- more palatable notation
450+ set P := ν.toMeasure -- more palatable notation
451+ set Ps := LevyProkhorov.toMeasure ∘ μs -- more palatable notation
421452 rw [ProbabilityMeasure.tendsto_iff_forall_integral_tendsto]
422453 refine fun f ↦ tendsto_integral_of_forall_limsup_integral_le_integral ?_ f
423454 intro f f_nn
@@ -456,19 +487,28 @@ lemma LevyProkhorov.continuous_equiv_probabilityMeasure :
456487 · rw [ENNReal.ofReal_add (by positivity) (by positivity), ← add_zero (levyProkhorovEDist _ _)]
457488 apply ENNReal.add_lt_add_of_le_of_lt (levyProkhorovEDist_ne_top _ _)
458489 (le_of_eq ?_) (ofReal_pos.mpr εs_pos)
459- rw [LevyProkhorov.dist_def, levyProkhorovDist, ofReal_toReal (levyProkhorovEDist_ne_top _ _)]
490+ rw [LevyProkhorov.dist_probabilityMeasure_def, levyProkhorovDist,
491+ ofReal_toReal (levyProkhorovEDist_ne_top _ _)]
460492 rfl
461493 · exact Eventually.of_forall f_nn
462494 · simp only [IsCoboundedUnder, IsCobounded, eventually_map, eventually_atTop,
463495 forall_exists_index]
464496 refine ⟨0 , fun a i hia ↦ le_trans (integral_nonneg f_nn) (hia i le_rfl)⟩
465497
498+ @[deprecated (since := "2025-10-28")]
499+ alias LevyProkhorov.continuous_equiv_probabilityMeasure :=
500+ LevyProkhorov.continuous_toMeasure_probabilityMeasure
501+
466502/-- The topology of the Lévy-Prokhorov metric is at least as fine as the topology of convergence in
467503distribution. -/
468- theorem levyProkhorov_le_convergenceInDistribution :
469- TopologicalSpace.coinduced (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)) inferInstance
504+ theorem LevyProkhorov.le_convergenceInDistribution :
505+ TopologicalSpace.coinduced (LevyProkhorov.toMeasure (α := ProbabilityMeasure Ω)) inferInstance
470506 ≤ (inferInstance : TopologicalSpace (ProbabilityMeasure Ω)) :=
471- (LevyProkhorov.continuous_equiv_probabilityMeasure).coinduced_le
507+ LevyProkhorov.continuous_toMeasure_probabilityMeasure.coinduced_le
508+
509+ @[deprecated (since := "2025-10-28")]
510+ alias _root_.MeasureTheory.levyProkhorov_le_convergenceInDistribution :=
511+ LevyProkhorov.le_convergenceInDistribution
472512
473513end Levy_Prokhorov_is_finer
474514
@@ -532,8 +572,10 @@ lemma SeparableSpace.exists_measurable_partition_diam_le {ε : ℝ} (ε_pos : 0
532572 simpa only [← aux] using iUnion_disjointed
533573 · exact disjoint_disjointed Bs
534574
535- lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure :
536- Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)).symm := by
575+ namespace LevyProkhorov
576+
577+ lemma continuous_ofMeasure_probabilityMeasure :
578+ Continuous (ofMeasure (α := ProbabilityMeasure Ω)) := by
537579 -- We check continuity of `id : ProbabilityMeasure Ω → LevyProkhorov (ProbabilityMeasure Ω)` at
538580 -- each point `P : ProbabilityMeasure Ω`.
539581 rw [continuous_iff_continuousAt]
@@ -580,7 +622,7 @@ lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure :
580622 -- (`≤ 2*ε/3`), it suffices to show that for arbitrary subsets `B ⊆ Ω`, the measure `P B` is
581623 -- bounded above up to a small error by the `Q`-measure of a small thickening of `B`.
582624 apply lt_of_le_of_lt ?_ (show 2 *(ε/3 ) < ε by linarith)
583- rw [dist_comm]
625+ rw [dist_comm, dist_probabilityMeasure_def ]
584626 -- Fix an arbitrary set `B ⊆ Ω`, and an arbitrary `δ > 2*ε/3` to gain some room for error
585627 -- and for thickening.
586628 apply levyProkhorovDist_le_of_forall_le _ _ (by linarith) (fun δ B δ_gt _ ↦ ?_)
@@ -630,38 +672,51 @@ lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure :
630672 apply add_le_add (measure_mono subset_thickB) (ofReal_le_ofReal _)
631673 exact δ_gt.le
632674
675+ @[deprecated (since := "2025-10-28")]
676+ alias continuous_equiv_symm_probabilityMeasure := continuous_ofMeasure_probabilityMeasure
677+
633678/-- The topology of the Lévy-Prokhorov metric on probability measures on a separable space
634679coincides with the topology of convergence in distribution. -/
635- theorem levyProkhorov_eq_convergenceInDistribution :
680+ theorem eq_convergenceInDistribution :
636681 (inferInstance : TopologicalSpace (ProbabilityMeasure Ω))
637- = TopologicalSpace.coinduced (LevyProkhorov.equiv _) inferInstance :=
638- le_antisymm (LevyProkhorov.continuous_equiv_symm_probabilityMeasure (Ω := Ω)).coinduced_le
639- levyProkhorov_le_convergenceInDistribution
682+ = TopologicalSpace.coinduced LevyProkhorov.toMeasure inferInstance :=
683+ le_convergenceInDistribution.antisymm' fun s hs ↦ by
684+ simpa using hs.preimage continuous_ofMeasure_probabilityMeasure
685+
686+ @[deprecated (since := "2025-10-28")]
687+ alias _root_.MeasureTheory.levyProkhorov_eq_convergenceInDistribution :=
688+ eq_convergenceInDistribution
640689
641690/-- The identity map is a homeomorphism from `ProbabilityMeasure Ω` with the topology of
642691convergence in distribution to `ProbabilityMeasure Ω` with the Lévy-Prokhorov (pseudo)metric. -/
643- noncomputable def homeomorph_probabilityMeasure_levyProkhorov :
692+ noncomputable def probabilityMeasureHomeomorph :
644693 ProbabilityMeasure Ω ≃ₜ LevyProkhorov (ProbabilityMeasure Ω) where
645- toFun := LevyProkhorov.equiv _
646- invFun := (LevyProkhorov.equiv _).symm
647- left_inv := congrFun rfl
648- right_inv := congrFun rfl
649- continuous_toFun := LevyProkhorov.continuous_equiv_symm_probabilityMeasure
650- continuous_invFun := LevyProkhorov.continuous_equiv_probabilityMeasure
694+ toFun := LevyProkhorov.ofMeasure
695+ invFun := LevyProkhorov.toMeasure
696+ left_inv _ := rfl
697+ right_inv _ := rfl
698+ continuous_toFun := LevyProkhorov.continuous_ofMeasure_probabilityMeasure
699+ continuous_invFun := LevyProkhorov.continuous_toMeasure_probabilityMeasure
700+
701+ @[deprecated (since := "2025-10-28")]
702+ alias _root_.MeasureTheory.homeomorph_probabilityMeasure_levyProkhorov :=
703+ probabilityMeasureHomeomorph
704+
705+ end LevyProkhorov
651706
652707/-- The topology of convergence in distribution on a separable space is pseudo-metrizable. -/
653708instance (X : Type *) [TopologicalSpace X] [PseudoMetrizableSpace X] [SeparableSpace X]
654709 [MeasurableSpace X] [OpensMeasurableSpace X] :
655710 PseudoMetrizableSpace (ProbabilityMeasure X) :=
656711 letI : PseudoMetricSpace X := TopologicalSpace.pseudoMetrizableSpacePseudoMetric X
657- (homeomorph_probabilityMeasure_levyProkhorov (Ω := X)).isInducing.pseudoMetrizableSpace
712+ (LevyProkhorov.probabilityMeasureHomeomorph (Ω := X)).isInducing.pseudoMetrizableSpace
658713
659714/-- The topology of convergence in distribution on a separable Borel space is metrizable. -/
660715instance instMetrizableSpaceProbabilityMeasure (X : Type *) [TopologicalSpace X]
661716 [PseudoMetrizableSpace X] [SeparableSpace X] [MeasurableSpace X] [BorelSpace X] :
662717 MetrizableSpace (ProbabilityMeasure X) := by
663718 letI : PseudoMetricSpace X := TopologicalSpace.pseudoMetrizableSpacePseudoMetric X
664- exact homeomorph_probabilityMeasure_levyProkhorov .isEmbedding.metrizableSpace
719+ exact LevyProkhorov.probabilityMeasureHomeomorph .isEmbedding.metrizableSpace
665720
666721end Levy_Prokhorov_metrizes_convergence_in_distribution
667722
0 commit comments