Skip to content

Commit 810af94

Browse files
committed
chore(MeasureTheory): turn LevyProkhorov into a one-field structure (#30845)
This caused some defeq abuse, notably in the homeo, where `toFun` and `invFun` were accidentally swapped!
1 parent 555167a commit 810af94

File tree

1 file changed

+155
-100
lines changed

1 file changed

+155
-100
lines changed

Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean

Lines changed: 155 additions & 100 deletions
Original file line numberDiff line numberDiff line change
@@ -18,13 +18,13 @@ import Mathlib.MeasureTheory.Integral.BoundedContinuousFunction
1818
1919
## Main results
2020
21-
* `levyProkhorovDist_pseudoMetricSpace_finiteMeasure`: The Lévy-Prokhorov distance is a
22-
pseudoemetric on the space of finite measures.
23-
* `levyProkhorovDist_pseudoMetricSpace_probabilityMeasure`: The Lévy-Prokhorov distance is a
24-
pseudoemetric on the space of probability measures.
25-
* `levyProkhorov_le_convergenceInDistribution`: The topology of the Lévy-Prokhorov metric on
21+
* `LevyProkhorov.instPseudoMetricSpaceFiniteMeasure`: The Lévy-Prokhorov distance is a
22+
pseudometric on the space of finite measures.
23+
* `LevyProkhorov.instPseudoMetricSpaceProbabilityMeasure`: The Lévy-Prokhorov distance is a
24+
pseudometric on the space of probability measures.
25+
* `LevyProkhorov.le_convergenceInDistribution`: The topology of the Lévy-Prokhorov metric on
2626
probability measures is always at least as fine as the topology of convergence in distribution.
27-
* `levyProkhorov_eq_convergenceInDistribution`: The topology of the Lévy-Prokhorov metric on
27+
* `LevyProkhorov.eq_convergenceInDistribution`: The topology of the Lévy-Prokhorov metric on
2828
probability measures on a separable space coincides with the topology of convergence in
2929
distribution, and in particular convergence in distribution is then pseudometrizable.
3030
@@ -104,15 +104,14 @@ lemma levyProkhorovEDist_le_max_measure_univ (μ ν : Measure Ω) :
104104
levyProkhorovEDist μ ν ≤ max (μ univ) (ν univ) := by
105105
refine sInf_le fun B _ ↦ ⟨?_, ?_⟩ <;> apply le_add_left <;> simp [measure_mono]
106106

107-
lemma levyProkhorovEDist_lt_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
107+
@[simp] lemma levyProkhorovEDist_lt_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
108108
levyProkhorovEDist μ ν < ∞ :=
109109
(levyProkhorovEDist_le_max_measure_univ μ ν).trans_lt <| by simp [measure_lt_top]
110110

111-
lemma levyProkhorovEDist_ne_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
111+
@[simp] lemma levyProkhorovEDist_ne_top (μ ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
112112
levyProkhorovEDist μ ν ≠ ∞ := (levyProkhorovEDist_lt_top μ ν).ne
113113

114-
lemma levyProkhorovEDist_self (μ : Measure Ω) :
115-
levyProkhorovEDist μ μ = 0 := by
114+
@[simp] lemma levyProkhorovEDist_self (μ : Measure Ω) : levyProkhorovEDist μ μ = 0 := by
116115
rw [← nonpos_iff_eq_zero, ← csInf_Ioo zero_lt_top]
117116
refine sInf_le_sInf fun ε ⟨hε₀, hε_top⟩ B _ ↦ and_self_iff.2 ?_
118117
refine le_add_right <| measure_mono <| self_subset_thickening ?_ _
@@ -181,34 +180,8 @@ lemma levyProkhorovDist_triangle [OpensMeasurableSpace Ω] (μ ν κ : Measure
181180
· simp only [levyProkhorovDist, ENNReal.toReal_add dμν_finite dνκ_finite]
182181
· exact ENNReal.add_ne_top.mpr ⟨dμν_finite, dνκ_finite⟩
183182

184-
/-- A type synonym, to be used for `Measure α`, `FiniteMeasure α`, or `ProbabilityMeasure α`,
185-
when they are to be equipped with the Lévy-Prokhorov distance. -/
186-
def LevyProkhorov (α : Type*) := α
187-
188-
/-- The "identity" equivalence between the type synonym `LevyProkhorov α` and `α`. -/
189-
def LevyProkhorov.equiv (α : Type*) : LevyProkhorov α ≃ α := Equiv.refl _
190-
191183
variable [OpensMeasurableSpace Ω]
192184

193-
/-- The Lévy-Prokhorov distance `levyProkhorovEDist` makes `Measure Ω` a pseudoemetric
194-
space. The instance is recorded on the type synonym `LevyProkhorov (Measure Ω) := Measure Ω`. -/
195-
noncomputable instance : PseudoEMetricSpace (LevyProkhorov (Measure Ω)) where
196-
edist := levyProkhorovEDist
197-
edist_self := levyProkhorovEDist_self
198-
edist_comm := levyProkhorovEDist_comm
199-
edist_triangle := levyProkhorovEDist_triangle
200-
201-
/-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `FiniteMeasure Ω` a pseudometric
202-
space. The instance is recorded on the type synonym
203-
`LevyProkhorov (FiniteMeasure Ω) := FiniteMeasure Ω`. -/
204-
noncomputable instance levyProkhorovDist_pseudoMetricSpace_finiteMeasure :
205-
PseudoMetricSpace (LevyProkhorov (FiniteMeasure Ω)) where
206-
dist μ ν := levyProkhorovDist μ.toMeasure ν.toMeasure
207-
dist_self _ := levyProkhorovDist_self _
208-
dist_comm _ _ := levyProkhorovDist_comm _ _
209-
dist_triangle _ _ _ := levyProkhorovDist_triangle _ _ _
210-
edist_dist μ ν := by simp [← ENNReal.ofReal_coe_nnreal]
211-
212185
lemma measure_le_measure_closure_of_levyProkhorovEDist_eq_zero {μ ν : Measure Ω}
213186
(hLP : levyProkhorovEDist μ ν = 0) {s : Set Ω} (s_mble : MeasurableSet s)
214187
(h_finite : ∃ δ > 0, ν (thickening δ s) ≠ ∞) :
@@ -240,46 +213,6 @@ lemma measure_eq_measure_of_levyProkhorovEDist_eq_zero_of_isClosed {μ ν : Meas
240213
(levyProkhorovEDist_comm μ ν ▸ hLP) s_closed.measurableSet hμs |>.trans <|
241214
le_of_eq (congr_arg _ s_closed.closure_eq)
242215

243-
/-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `ProbabilityMeasure Ω` a pseudometric
244-
space. The instance is recorded on the type synonym
245-
`LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
246-
247-
Note: For this pseudometric to give the topology of convergence in distribution, one must
248-
furthermore assume that `Ω` is separable. -/
249-
noncomputable instance levyProkhorovDist_pseudoMetricSpace_probabilityMeasure :
250-
PseudoMetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) where
251-
dist μ ν := levyProkhorovDist μ.toMeasure ν.toMeasure
252-
dist_self _ := levyProkhorovDist_self _
253-
dist_comm _ _ := levyProkhorovDist_comm _ _
254-
dist_triangle _ _ _ := levyProkhorovDist_triangle _ _ _
255-
edist_dist μ ν := by simp [← ENNReal.ofReal_coe_nnreal]
256-
257-
lemma LevyProkhorov.dist_def (μ ν : LevyProkhorov (ProbabilityMeasure Ω)) :
258-
dist μ ν = levyProkhorovDist μ.toMeasure ν.toMeasure := rfl
259-
260-
/-- If `Ω` is a Borel space, then the Lévy-Prokhorov distance `levyProkhorovDist` makes
261-
`ProbabilityMeasure Ω` a metric space. The instance is recorded on the type synonym
262-
`LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
263-
264-
Note: For this metric to give the topology of convergence in distribution, one must
265-
furthermore assume that `Ω` is separable. -/
266-
noncomputable instance levyProkhorovDist_metricSpace_probabilityMeasure [BorelSpace Ω] :
267-
MetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) where
268-
eq_of_dist_eq_zero := by
269-
intro μ ν h
270-
apply (LevyProkhorov.equiv _).injective
271-
apply ProbabilityMeasure.toMeasure_injective
272-
apply ext_of_generate_finite _ ?_ isPiSystem_isClosed ?_ (by simp)
273-
· rw [BorelSpace.measurable_eq (α := Ω), borel_eq_generateFrom_isClosed]
274-
· intro A A_closed
275-
apply measure_eq_measure_of_levyProkhorovEDist_eq_zero_of_isClosed
276-
· simpa only [levyProkhorovEDist_ne_top μ.toMeasure ν.toMeasure, mem_setOf_eq,
277-
or_false, ne_eq, zero_ne_top, not_false_eq_true, toReal_zero]
278-
using (toReal_eq_zero_iff _).mp h
279-
· exact A_closed
280-
· exact ⟨1, Real.zero_lt_one, measure_ne_top _ _⟩
281-
· exact ⟨1, Real.zero_lt_one, measure_ne_top _ _⟩
282-
283216
/-- A simple sufficient condition for bounding `levyProkhorovEDist` between probability measures
284217
from above. The condition involves only one of two natural bounds, the other bound is for free. -/
285218
lemma levyProkhorovEDist_le_of_forall_le
@@ -316,6 +249,104 @@ lemma levyProkhorovDist_le_of_forall_le
316249
convert h ε.toReal B ε_gt' B_mble
317250
exact (ENNReal.ofReal_toReal ε_lt_top.ne).symm
318251

252+
/-! ### Equipping measures with the Lévy-Prokhorov metric -/
253+
254+
/-- A type synonym, to be used for `Measure α`, `FiniteMeasure α`, or `ProbabilityMeasure α`,
255+
when they are to be equipped with the Lévy-Prokhorov distance. -/
256+
structure LevyProkhorov (α : Type*) where
257+
/-- Turn a measure into the corresponding element of the space of measures equipped with the
258+
Lévy-Prokhorov metric. -/
259+
ofMeasure ::
260+
/-- Turn an element of the space of measure equipped with the Lévy-Prokhorov metric into the
261+
corresponding measure. -/
262+
toMeasure : α
263+
264+
open Lean.PrettyPrinter.Delaborator in
265+
/-- This prevents `ofMeasure x` being printed as `{ toMeasure := x }` by `delabStructureInstance`.
266+
-/
267+
@[app_delab LevyProkhorov.ofMeasure]
268+
def LevyProkhorov.delabOfMeasure : Delab := delabApp
269+
270+
namespace LevyProkhorov
271+
272+
lemma toMeasure_injective {α : Type*} : (toMeasure : LevyProkhorov α → α).Injective :=
273+
fun ⟨μ⟩ ⟨ν⟩ => by congr!
274+
275+
/-- `LevyProkhorov.toMeasure` as an equiv. -/
276+
@[simps]
277+
def toMeasureEquiv {α : Type*} : LevyProkhorov α ≃ α where
278+
toFun := toMeasure
279+
invFun := ofMeasure
280+
281+
@[deprecated (since := "2025-10-28")] alias equiv := toMeasureEquiv
282+
283+
/-- The Lévy-Prokhorov distance `levyProkhorovEDist` makes `Measure Ω` a pseudoemetric
284+
space. The instance is recorded on the type synonym `LevyProkhorov (Measure Ω) := Measure Ω`. -/
285+
noncomputable instance instPseudoEMetricSpaceMeasure :
286+
PseudoEMetricSpace (LevyProkhorov (Measure Ω)) where
287+
edist μ ν := levyProkhorovEDist μ.toMeasure ν.toMeasure
288+
edist_self _ := levyProkhorovEDist_self _
289+
edist_comm _ _ := levyProkhorovEDist_comm ..
290+
edist_triangle _ _ _ := levyProkhorovEDist_triangle ..
291+
292+
/-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `FiniteMeasure Ω` a pseudometric
293+
space. The instance is recorded on the type synonym
294+
`LevyProkhorov (FiniteMeasure Ω) := FiniteMeasure Ω`. -/
295+
noncomputable instance instPseudoMetricSpaceFiniteMeasure :
296+
PseudoMetricSpace (LevyProkhorov (FiniteMeasure Ω)) where
297+
edist μ ν := levyProkhorovEDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure
298+
dist μ ν := levyProkhorovDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure
299+
dist_self _ := levyProkhorovDist_self _
300+
dist_comm _ _ := levyProkhorovDist_comm ..
301+
dist_triangle _ _ _ := levyProkhorovDist_triangle ..
302+
edist_dist μ ν := by simp [levyProkhorovDist, levyProkhorovEDist_ne_top]
303+
304+
/-- The Lévy-Prokhorov distance `levyProkhorovDist` makes `ProbabilityMeasure Ω` a pseudometric
305+
space. The instance is recorded on the type synonym
306+
`LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
307+
308+
Note: For this pseudometric to give the topology of convergence in distribution, one must
309+
furthermore assume that `Ω` is separable. -/
310+
noncomputable instance instPseudoMetricSpaceProbabilityMeasure :
311+
PseudoMetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) :=
312+
.induced (LevyProkhorov.ofMeasure ·.toMeasure.toFiniteMeasure) inferInstance
313+
314+
lemma edist_measure_def (μ ν : LevyProkhorov (Measure Ω)) :
315+
edist μ ν = levyProkhorovEDist μ.toMeasure ν.toMeasure := rfl
316+
317+
lemma edist_finiteMeasure_def (μ ν : LevyProkhorov (FiniteMeasure Ω)) :
318+
edist μ ν = levyProkhorovEDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
319+
320+
lemma dist_finiteMeasure_def (μ ν : LevyProkhorov (FiniteMeasure Ω)) :
321+
dist μ ν = levyProkhorovDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
322+
323+
lemma edist_probabilityMeasure_def (μ ν : LevyProkhorov (ProbabilityMeasure Ω)) :
324+
edist μ ν = levyProkhorovEDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
325+
326+
lemma dist_probabilityMeasure_def (μ ν : LevyProkhorov (ProbabilityMeasure Ω)) :
327+
dist μ ν = levyProkhorovDist μ.toMeasure.toMeasure ν.toMeasure.toMeasure := rfl
328+
329+
@[deprecated (since := "2025-10-28")] alias dist_def := dist_probabilityMeasure_def
330+
331+
/-- If `Ω` is a Borel space, then the Lévy-Prokhorov distance `levyProkhorovDist` makes
332+
`ProbabilityMeasure Ω` into a metric space. The instance is recorded on the type synonym
333+
`LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω`.
334+
335+
Note: For this metric to give the topology of convergence in distribution, one must
336+
furthermore assume that `Ω` is separable. -/
337+
noncomputable instance levyProkhorovDist_metricSpace_probabilityMeasure [BorelSpace Ω] :
338+
MetricSpace (LevyProkhorov (ProbabilityMeasure Ω)) where
339+
eq_of_dist_eq_zero {μ ν} h := by
340+
apply toMeasure_injective
341+
apply ProbabilityMeasure.toMeasure_injective
342+
refine ext_of_generate_finite _ ?_ isPiSystem_isClosed (fun A hA ↦ ?_) (by simp)
343+
· rw [BorelSpace.measurable_eq (α := Ω), borel_eq_generateFrom_isClosed]
344+
refine measure_eq_measure_of_levyProkhorovEDist_eq_zero_of_isClosed ?_ hA ?_ ?_
345+
· simpa [dist_probabilityMeasure_def, levyProkhorovDist, toReal_eq_zero_iff] using h
346+
· exact ⟨1, Real.zero_lt_one, measure_ne_top _ _⟩
347+
· exact ⟨1, Real.zero_lt_one, measure_ne_top _ _⟩
348+
349+
end LevyProkhorov
319350
end Levy_Prokhorov --section
320351

321352
section Levy_Prokhorov_is_finer
@@ -412,12 +443,12 @@ lemma tendsto_integral_meas_thickening_le (f : Ω →ᵇ ℝ)
412443
· finiteness
413444

414445
/-- The identity map `LevyProkhorov (ProbabilityMeasure Ω) → ProbabilityMeasure Ω` is continuous. -/
415-
lemma LevyProkhorov.continuous_equiv_probabilityMeasure :
416-
Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)) := by
446+
lemma LevyProkhorov.continuous_toMeasure_probabilityMeasure :
447+
Continuous (toMeasure (α := ProbabilityMeasure Ω)) := by
417448
refine SeqContinuous.continuous ?_
418449
intro μs ν hμs
419-
set P := LevyProkhorov.equiv _ ν -- more palatable notation
420-
set Ps := LevyProkhorov.equiv _ ∘ μs -- more palatable notation
450+
set P := ν.toMeasure -- more palatable notation
451+
set Ps := LevyProkhorov.toMeasure ∘ μs -- more palatable notation
421452
rw [ProbabilityMeasure.tendsto_iff_forall_integral_tendsto]
422453
refine fun f ↦ tendsto_integral_of_forall_limsup_integral_le_integral ?_ f
423454
intro f f_nn
@@ -456,19 +487,28 @@ lemma LevyProkhorov.continuous_equiv_probabilityMeasure :
456487
· rw [ENNReal.ofReal_add (by positivity) (by positivity), ← add_zero (levyProkhorovEDist _ _)]
457488
apply ENNReal.add_lt_add_of_le_of_lt (levyProkhorovEDist_ne_top _ _)
458489
(le_of_eq ?_) (ofReal_pos.mpr εs_pos)
459-
rw [LevyProkhorov.dist_def, levyProkhorovDist, ofReal_toReal (levyProkhorovEDist_ne_top _ _)]
490+
rw [LevyProkhorov.dist_probabilityMeasure_def, levyProkhorovDist,
491+
ofReal_toReal (levyProkhorovEDist_ne_top _ _)]
460492
rfl
461493
· exact Eventually.of_forall f_nn
462494
· simp only [IsCoboundedUnder, IsCobounded, eventually_map, eventually_atTop,
463495
forall_exists_index]
464496
refine ⟨0, fun a i hia ↦ le_trans (integral_nonneg f_nn) (hia i le_rfl)⟩
465497

498+
@[deprecated (since := "2025-10-28")]
499+
alias LevyProkhorov.continuous_equiv_probabilityMeasure :=
500+
LevyProkhorov.continuous_toMeasure_probabilityMeasure
501+
466502
/-- The topology of the Lévy-Prokhorov metric is at least as fine as the topology of convergence in
467503
distribution. -/
468-
theorem levyProkhorov_le_convergenceInDistribution :
469-
TopologicalSpace.coinduced (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)) inferInstance
504+
theorem LevyProkhorov.le_convergenceInDistribution :
505+
TopologicalSpace.coinduced (LevyProkhorov.toMeasure (α := ProbabilityMeasure Ω)) inferInstance
470506
≤ (inferInstance : TopologicalSpace (ProbabilityMeasure Ω)) :=
471-
(LevyProkhorov.continuous_equiv_probabilityMeasure).coinduced_le
507+
LevyProkhorov.continuous_toMeasure_probabilityMeasure.coinduced_le
508+
509+
@[deprecated (since := "2025-10-28")]
510+
alias _root_.MeasureTheory.levyProkhorov_le_convergenceInDistribution :=
511+
LevyProkhorov.le_convergenceInDistribution
472512

473513
end Levy_Prokhorov_is_finer
474514

@@ -532,8 +572,10 @@ lemma SeparableSpace.exists_measurable_partition_diam_le {ε : ℝ} (ε_pos : 0
532572
simpa only [← aux] using iUnion_disjointed
533573
· exact disjoint_disjointed Bs
534574

535-
lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure :
536-
Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)).symm := by
575+
namespace LevyProkhorov
576+
577+
lemma continuous_ofMeasure_probabilityMeasure :
578+
Continuous (ofMeasure (α := ProbabilityMeasure Ω)) := by
537579
-- We check continuity of `id : ProbabilityMeasure Ω → LevyProkhorov (ProbabilityMeasure Ω)` at
538580
-- each point `P : ProbabilityMeasure Ω`.
539581
rw [continuous_iff_continuousAt]
@@ -580,7 +622,7 @@ lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure :
580622
-- (`≤ 2*ε/3`), it suffices to show that for arbitrary subsets `B ⊆ Ω`, the measure `P B` is
581623
-- bounded above up to a small error by the `Q`-measure of a small thickening of `B`.
582624
apply lt_of_le_of_lt ?_ (show 2*(ε/3) < ε by linarith)
583-
rw [dist_comm]
625+
rw [dist_comm, dist_probabilityMeasure_def]
584626
-- Fix an arbitrary set `B ⊆ Ω`, and an arbitrary `δ > 2*ε/3` to gain some room for error
585627
-- and for thickening.
586628
apply levyProkhorovDist_le_of_forall_le _ _ (by linarith) (fun δ B δ_gt _ ↦ ?_)
@@ -630,38 +672,51 @@ lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure :
630672
apply add_le_add (measure_mono subset_thickB) (ofReal_le_ofReal _)
631673
exact δ_gt.le
632674

675+
@[deprecated (since := "2025-10-28")]
676+
alias continuous_equiv_symm_probabilityMeasure := continuous_ofMeasure_probabilityMeasure
677+
633678
/-- The topology of the Lévy-Prokhorov metric on probability measures on a separable space
634679
coincides with the topology of convergence in distribution. -/
635-
theorem levyProkhorov_eq_convergenceInDistribution :
680+
theorem eq_convergenceInDistribution :
636681
(inferInstance : TopologicalSpace (ProbabilityMeasure Ω))
637-
= TopologicalSpace.coinduced (LevyProkhorov.equiv _) inferInstance :=
638-
le_antisymm (LevyProkhorov.continuous_equiv_symm_probabilityMeasure (Ω := Ω)).coinduced_le
639-
levyProkhorov_le_convergenceInDistribution
682+
= TopologicalSpace.coinduced LevyProkhorov.toMeasure inferInstance :=
683+
le_convergenceInDistribution.antisymm' fun s hs ↦ by
684+
simpa using hs.preimage continuous_ofMeasure_probabilityMeasure
685+
686+
@[deprecated (since := "2025-10-28")]
687+
alias _root_.MeasureTheory.levyProkhorov_eq_convergenceInDistribution :=
688+
eq_convergenceInDistribution
640689

641690
/-- The identity map is a homeomorphism from `ProbabilityMeasure Ω` with the topology of
642691
convergence in distribution to `ProbabilityMeasure Ω` with the Lévy-Prokhorov (pseudo)metric. -/
643-
noncomputable def homeomorph_probabilityMeasure_levyProkhorov :
692+
noncomputable def probabilityMeasureHomeomorph :
644693
ProbabilityMeasure Ω ≃ₜ LevyProkhorov (ProbabilityMeasure Ω) where
645-
toFun := LevyProkhorov.equiv _
646-
invFun := (LevyProkhorov.equiv _).symm
647-
left_inv := congrFun rfl
648-
right_inv := congrFun rfl
649-
continuous_toFun := LevyProkhorov.continuous_equiv_symm_probabilityMeasure
650-
continuous_invFun := LevyProkhorov.continuous_equiv_probabilityMeasure
694+
toFun := LevyProkhorov.ofMeasure
695+
invFun := LevyProkhorov.toMeasure
696+
left_inv _ := rfl
697+
right_inv _ := rfl
698+
continuous_toFun := LevyProkhorov.continuous_ofMeasure_probabilityMeasure
699+
continuous_invFun := LevyProkhorov.continuous_toMeasure_probabilityMeasure
700+
701+
@[deprecated (since := "2025-10-28")]
702+
alias _root_.MeasureTheory.homeomorph_probabilityMeasure_levyProkhorov :=
703+
probabilityMeasureHomeomorph
704+
705+
end LevyProkhorov
651706

652707
/-- The topology of convergence in distribution on a separable space is pseudo-metrizable. -/
653708
instance (X : Type*) [TopologicalSpace X] [PseudoMetrizableSpace X] [SeparableSpace X]
654709
[MeasurableSpace X] [OpensMeasurableSpace X] :
655710
PseudoMetrizableSpace (ProbabilityMeasure X) :=
656711
letI : PseudoMetricSpace X := TopologicalSpace.pseudoMetrizableSpacePseudoMetric X
657-
(homeomorph_probabilityMeasure_levyProkhorov (Ω := X)).isInducing.pseudoMetrizableSpace
712+
(LevyProkhorov.probabilityMeasureHomeomorph (Ω := X)).isInducing.pseudoMetrizableSpace
658713

659714
/-- The topology of convergence in distribution on a separable Borel space is metrizable. -/
660715
instance instMetrizableSpaceProbabilityMeasure (X : Type*) [TopologicalSpace X]
661716
[PseudoMetrizableSpace X] [SeparableSpace X] [MeasurableSpace X] [BorelSpace X] :
662717
MetrizableSpace (ProbabilityMeasure X) := by
663718
letI : PseudoMetricSpace X := TopologicalSpace.pseudoMetrizableSpacePseudoMetric X
664-
exact homeomorph_probabilityMeasure_levyProkhorov.isEmbedding.metrizableSpace
719+
exact LevyProkhorov.probabilityMeasureHomeomorph.isEmbedding.metrizableSpace
665720

666721
end Levy_Prokhorov_metrizes_convergence_in_distribution
667722

0 commit comments

Comments
 (0)