@@ -5,6 +5,7 @@ Authors: Yaël Dillies
55-/
66import Mathlib.CategoryTheory.Monoidal.Cartesian.CommMon_
77import Mathlib.CategoryTheory.Monoidal.Cartesian.Grp_
8+ import Mathlib.CategoryTheory.Monoidal.CommGrp_
89
910/-!
1011# Yoneda embedding of `CommGrp C`
@@ -25,8 +26,6 @@ class abbrev CommGrpObj := GrpObj X, IsCommMonObj X
2526
2627@[deprecated (since := "2025-09-13")] alias CommGrp_Class := CommGrpObj
2728
28- section CommGrp
29-
3029variable (X) in
3130/-- If `X` represents a presheaf of commutative groups, then `X` is a commutative group object. -/
3231def CommGrpObj.ofRepresentableBy (F : Cᵒᵖ ⥤ CommGrpCat.{w})
@@ -37,5 +36,27 @@ def CommGrpObj.ofRepresentableBy (F : Cᵒᵖ ⥤ CommGrpCat.{w})
3736@[deprecated (since := "2025-09-13")]
3837alias CommGrp_Class.ofRepresentableBy := CommGrpObj.ofRepresentableBy
3938
40- end CommGrp
39+ /-- The yoneda embedding of `CommGrp C` into presheaves of groups. -/
40+ @[simps]
41+ def yonedaCommGrpGrpObj (G : CommGrp C) : (Grp C)ᵒᵖ ⥤ CommGrpCat where
42+ obj H := .of (unop H ⟶ G.toGrp)
43+ map {H I} f := CommGrpCat.ofHom {
44+ toFun := (f.unop ≫ ·)
45+ map_one' := by ext; simp [Mon.Hom.hom_one]
46+ map_mul' g h := by ext; simpa using ((yonedaGrpObj G.X).map f.unop.1 .op).hom.map_mul g.hom h.hom
47+ }
48+
49+ /-- The yoneda embedding of `CommGrp C` into presheaves of groups. -/
50+ @[simps]
51+ def yonedaCommGrpGrp : CommGrp C ⥤ (Grp C)ᵒᵖ ⥤ CommGrpCat where
52+ obj := yonedaCommGrpGrpObj
53+ map {X₁ X₂} ψ := {
54+ app Y := CommGrpCat.ofHom {
55+ toFun := (· ≫ ψ)
56+ map_one' := by ext; simp
57+ map_mul' f g := by
58+ ext; simpa using ((yonedaGrp.map ψ).app (op (unop Y).X)).hom.map_mul f.hom g.hom
59+ }
60+ }
61+
4162end CategoryTheory
0 commit comments